DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 1 -ROOTS OF EQUATION \& ERROR APPROXIMATIONS
 SUBJECT: 302047 Numerical Methods and Optimization
 COURSE : TE (2015 Pattern)
 THEORY QUESTIONS

Errors
Q. 1 Explain: i) Round off error ii) Truncation error 4
Q. 2 Explain: i) Round off error ii) Error Propagation 6
Q. 3 What is Error Propagation? Explain Error Propagation with respect to- 61. Addition 2. Subtraction 3.Multiplication 4.Division
Q. 4 Explain: 1.Error Propagation 2.Round off error 3.Truncation error 4. 8Absolute error with example.
Q. 5 Explain: 1.Rounding error 2.Truncation error 3. Absolute error 4. Relative 8error with example.
Roots of Equation
Q. 6 Find the root of the equation $3 x+\sin x-e^{x}=0$ by the successive 6 approximation Method correct to 2 decimal places.
Q. $7 \quad$ Volume of cylinder is calculated after measuring its diameter as (2.5 ± 0.02) 6 m and its height as $(4.8 \pm 0.05) \mathrm{m}$ respectively. Estimate the absolute error incalculation of volume.
Q. 8 Determine the real root of the equation ex $=5 \mathrm{x}$ using method of successive 6 approximation. Assume initial guess $\mathrm{x}=0.15$ and solve upto 5 iterations
Q. 9 Explain the concept of convergence in Newton Raphson method 6
Q. 10 Draw the flow chart for Bisection method. 6
Q. 11 Solve the equation $\mathrm{e}^{\mathrm{x}} \cdot \cos \mathrm{x}-1.2 \sin \mathrm{x}-0.5=0$ by successive approximation 8method.Do 3 iterations.
Q. 12 Using Newton's iterative method, find the real root of $\mathrm{x} \log _{10} \mathrm{x}=1.2$ correct 8to five decimal places.
Q. 13 Find by Newton's method, the real root of the equation $3 \mathrm{x}=\cos \mathrm{x}+1$, 8correct to four decimal places.
Q. 14 Using three iterations of bisection method, determine root of the equation. 8 Initial guesses are $\mathrm{x}_{1}=2.8$ and $\mathrm{x}_{2}=3, \mathrm{f}(\mathrm{x})=-0.9 \mathrm{x}^{2}+1.7 \mathrm{x}+2.5$
Q. 15 Use Bisection method to obtain the root of $x * e x-5 \cos x=0$ Start with initial 9 guess -1.5 and 2.0. Desired accuracy is ± 0.01
Q. 16 Draw the flow chart for Newton Raphson method 6
Q. 17 Draw the flow chart for of Successive approximation method. 6

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 2 -SIMULTANEOUS EOUATIONS

SUBJECT: 302047 Numerical Methods and Optimization
COURSE : TE (2015 Pattern)
THEORY QUESTIONS
Q. 1 Solve the following system of equation using Gauss elimination method.
$3 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=18$;
$2 \mathrm{x}+\mathrm{y}+\mathrm{z}=10$;
$x+4 y+9 z=16$
Q. 2 When does the Gauss elimination method fail? Explain
Q. 3 Solve following set of equations using Gauss Elimination Method.
$3 \mathrm{X}+6 \mathrm{Y}+\mathrm{Z}=16$
$2 X+4 Y+3 Z=13$
$\mathrm{X}+3 \mathrm{Y}+2 \mathrm{Z}=9$
Q. 4 Draw a flowchart for Gauss elimination method.
Q. 5 Apply Gauss elimination method to solve the following equations:
i) $x+4 y-z=-5 ; x+y-6 z=-12 ; 3 x-y-z=4$
ii) $10 x-7 y+3 z+5 u=6 ;-6 x+8 y-z-4 u=5 ; 3 x+y+4 y+11 u=2 ; 5 x-9 y-2 z+4 u=7$
iii) $x+y+z=9 ; 2 x-3 y+4 z=13 ; 3 x+4 y+5 z=40$
iv) $2 x+y+z=12 ; 3 x+2 y+3 z=8 ; 5 x+10 y-8 z=10$
v) $2 x+2 y+z=12 ; 3 x+2 y+2 z=8 ; 5 x+10 y-8 z=10$
vi) $2 \times 1+4 \times 2+x 3=3 ; 3 \times 1+2 \times 2-2 \times 3=-2 ; x 1-x 2+x 3=6$
vii) $5 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=4 ; \mathrm{x}_{1}+7 \mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=12 ; \mathrm{x}_{1}+\mathrm{x}_{2}+6 \mathrm{x}_{3}+\mathrm{x}_{4}=-5 ; \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+4 \mathrm{x}_{4}=-6$
viii) $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=10 ; 3 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=18 ; \mathrm{x}+4 \mathrm{y}+9 \mathrm{z}=16$
ix) $2 x-3 y+z=-1 ; x+4 y+5 z=25 ; 3 x-4 y+z=2$
x) $x+3 y+3 z=16 ; x+4 y+3 z=18 ; x+3 y+4 z=19$
xi) $2 \mathrm{x}_{1}+\mathrm{x}_{2}+5 \mathrm{x}_{3}+\mathrm{x}_{4}=5 ; \mathrm{x}_{1}+\mathrm{x}_{2}-3 \mathrm{x}_{3}+4 \mathrm{x}_{4}=-1 ; 3 \mathrm{x}_{1}+6 \mathrm{x}_{2}-2 \mathrm{x}_{3}+\mathrm{x}_{4}=8 ; 2 \mathrm{x}_{1}+2 \mathrm{x}_{2}+2 \mathrm{x}_{3}-$ $3 x_{4}=2$

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 2 -SIMULTANEOUS EOUATIONS

SUBJECT: 302047 Numerical Methods and Optimization
COURSE : TE (2015 Pattern)
THEORY QUESTIONS
Q. 6 Using Gauss Seidal method, solve the following set of equations up to 3 decimal places.
$3 \mathrm{x}+\mathrm{y}-\mathrm{z}=0$,
$x+2 y+z=0$,
$x-y+4 z=3$
Q. 7 Using Gauss Seidal iteration method, solve the following set of equations up to 5 iteration
$4 \mathrm{x}+2 \mathrm{z}=4$,
$5 \mathrm{x}+2 \mathrm{z}=3$,
$5 \mathrm{x}-4 \mathrm{y}+10 \mathrm{z}=2$
Q. 8 Apply Gauss - Seidal iteration method to solve the following equations:
i) $20 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=17 ; 3 \mathrm{x}+20 \mathrm{y}-\mathrm{z}=-18 ; 2 \mathrm{x}-3 \mathrm{y}+20 \mathrm{z}=25$
ii) $10 \mathrm{x}_{1}-2 \mathrm{x}_{2}-\mathrm{x}_{3}-\mathrm{x}_{4}=3 ;-2 \mathrm{x}_{1}+10 \mathrm{x}_{2}-\mathrm{x}_{3}-\mathrm{x}_{4}=15 ;-\mathrm{x}_{1}-\mathrm{x}_{2}+10 \mathrm{x}_{3}-2 \mathrm{x}_{4}=27 ;-\mathrm{x}_{1}-\mathrm{x}_{2}-$ $2 \mathrm{x}_{3}+10 \mathrm{x}_{4}=-9$
iii) $2 x+y+6 z=9 ; 8 x+3 y+2 z=13 ; x+5 y+z=7$
iv) $10 x+y+z=12 ; 2 x+10 y+z=13 ; 2 x+2 y+10 z=14$
v) $54 x+y+z=110 ; 2 x+15 y+6 z=72 ;-x+6 y+27 z=85$
vi) $10 \times 1-2 \times 2-\mathrm{x} 3-\mathrm{x} 4=3 ;-2 \mathrm{x} 1+10 \times 2-\mathrm{x} 3-\mathrm{x} 4=15$; -x1-x2+10x3-2x4=27; -x1-x2$2 \times 3+10 \times 4=-9$
Q. 9 Draw flow chart for Gauss - Seidal method
Q. 10 Using Thomas Algorithm Method, solve the following set of
simultaneous equations $5 \mathrm{a}-\mathrm{b}=5.5$; $-\mathrm{a}+5 \mathrm{~b}-\mathrm{c}=5$;
$-b+5 c-d=11.5 ;-c+5 d=16.5$
Q. 11 Solve the following tri-diagonal system with the Thomas algorithm:

$$
\left[\begin{array}{cccc}
2.04 & -1 & 0 & 0 \\
-1 & 2.04 & -1 & 0 \\
0 & -1 & 2.04 & -1 \\
0 & 0 & -1 & 2.04
\end{array}\right]\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4}
\end{array}\right]=\left[\begin{array}{l}
40.8 \\
0.8 \\
0.8 \\
200.8
\end{array}\right]
$$

Q. 12 Solve the following tri-diagonal system with the Thomas algorithm:
$2 x_{1}+9 x_{2}+3 x_{3}=14$
$\mathrm{x}_{2}+10 \mathrm{x}_{3}+4 \mathrm{x}_{4}=15$
$3 x_{3}+11 x_{4}=14$
Q. 13 Draw flow chart for Thomas algorithm method

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 3 - OPTIMIZATION
SUBJECT: 302047 Numerical Methods and Optimization COURSE : TE (2015 Pattern)

THEORY QUESTIONS

Q. 1	Maximize Z $=6 \times 1+4 \times 2$ subject to condition, $\begin{aligned} & 2 \times 1+3 \times 2 \leq 100 \\ & 4 \times 1+2 \times 2 \leq 120 \quad x 1, x 2 \geq 0 \end{aligned}$ Use Simplex Method to calculate $\mathrm{x} 1, \mathrm{x} 2$ and maximize profit Z.	10
Q. 2	Minimize $Z=2 x+3 y$ subject to condition $\begin{aligned} & 2 x+4 y \geq 80 \\ & 4 x+2 y \geq 100 x \geq 0, y \geq 0 \end{aligned}$	8
Q. 3	Define optimization. Write its engineering applications.	2
Q. 4	A company is manufacturing two different types of products A and B . Each product has to be processed on two machines M 1 and M 1 . Product A requires 2 hours on machine M1 and 1 hour on machine M2. Product B requires 1 hour on machine M1 and 2 hours on machine M2. The available capacity of machine M1 is 104 hours and that of machine M2 is 76 hours Profit per unit for product A is Rs. 6 and that for product B is Rs. 11. i) Formulate the problem. ii) Find the optimal solution by simplex method.	6
Q. 5	Determine the maximum value of root of equation. $0.51(\mathrm{x})-\sin (\mathrm{x})$ by Newton's method. Take initial guess as 2 and do 4 iterations.	5
Q. 6	Write a short note on Genetic Algorithm.	3
Q. 7	Maximize $Z=6 x+4 y$. Subjected to condition , $2 x+3 y \leq 100,4 x+2 y \leq 120, x \geq 0, y \geq 0$	10
Q. 8	Write the short note on optimization techniques Simulated annealing	4
Q. 9	Minimize, $Z=2 x+3 y$. Constraints are, $2 x+4 y \leq 80$ $4 x+2 y \leq 100 \quad \& \quad x, y \geq 0$	6

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 3 - OPTIMIZATION
SUBJECT: 302047 Numerical Methods and Optimization COURSE : TE (2015 Pattern)

THEORY QUESTIONS

Q.10	Maximize, $Z=2 x_{1}+5 x_{2}$ Constraints are, $x_{1}+4 x_{2} \leq 24$ $3 x_{1}+x_{2} \leq 21$ $x_{1}+x_{2} \leq 9, x_{1}, x_{2} \geq 0$.	10
Q. 11	Maximize $Z=1600 x+1500 y$. Constraints are, $5 x+4 y \leq 500$ $15 x+16 y \leq 1800 \& x \geq 0, y \geq 0$	10
Q. 12	Write the short note on the optimization technique Genetic algorithm	4

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 4 - NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS
 SUBJECT: 302047 Numerical Methods and Optimization
 COURSE : TE (2015 Pattern)

THEORY QUESTIONS

Taylor's series method

Q. 1 Solve $y^{`}=x+y, y(0)=1$ by Taylor's series method. Hence find the values of y at $\mathrm{x}=0.1$ and $\mathrm{x}=0.2$.
Q. 2 Find by Taylor's series method, the values of y at $\mathrm{x}=0.1$ and $\mathrm{x}=0.2$ to five places of decimals from $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.
Q. 3 Using Taylor's series method, compute $y(0.2)$ to three places of decimal from $\frac{d y}{d x}=1-2 x y$ given that $y(0)=0$.
Q. 4 Solve $y^{`}=y 2+x, y(0)=1$ using Taylor's series method and compute $y(0.1)$ and $y(0.2)$.

Euler's method

Q. 5 Using Euler's method, find an approximate value of y corresponding to $\mathrm{x}=1$8 given that $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$.
Q. 6 Given $\frac{d y}{d x}=y-x / y+x$ with initial condition $y=1$ at $x=0$; find y for $x=$ 0.1 by Euler's method.
Q. 7 Using modified Euler's method, find an approximate value of y when $x=0.3$8 given that $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$.
Q. 8 Solve the following by Euler's modified method: $\frac{d y}{d x}=\log (x+y), y(0)=2$

Runge - Kutta $2^{\text {nd }}$ order

Q. 9 Solve the following differential equation to find value of ' y ' at given value 8 of ' x ' by using Runge Kutta method of $2^{\text {th }}$ order. Solve the equation $2 \frac{d^{2} y}{d x^{2}}=3 \mathrm{x} \frac{d y}{d x}-9 \mathrm{y}+9$
Subject to the conditions $\mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=-2$ compute y for $\mathrm{x}=0.1$
Q .10 Solve the following differential equation to find value of ' y ' at given value 8 of ' x ' by using Runge Kutta method of $2^{\text {th }}$ order.
$\frac{d y}{d x}=x+y / z$ and $\frac{d z}{d x}=x^{*} y+z$ with $x 0=0.5$ and $\quad y 0=1.5, \quad z 0=1$
compute y and z for $\mathrm{x}=0.6$
Runge - Kutta $4^{\text {th }}$ order
Q. 11 Apply Runge - Kutta fourth order method to find an approximate value of y when $x=0.2$ given that $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$.
Q. 12 Using Runge - Kutta method of fourth order, solve $\frac{d y}{d x}=y^{2}-x^{2} / y^{2}+x^{2}$

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 4 - NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS
SUBJECT: 302047 Numerical Methods and Optimization
COURSE : TE (2015 Pattern)
THEORY QUESTIONS
with $y(0)=1$ at $x=0.2,0.4$.
Q. 13 Use Runge - Kutta method to approximate y when $x=1.1$, given that
Q. 14 Using fourth order Runge - Kutta method, find y at $x=0.1$ given that
Q. 15 Solve the equation $\frac{d 2 y}{d x 2}+2 \frac{d 2 u}{d y 2}=\frac{1}{x y} \quad$ corresponding to grid shown in the
following fig.

Q. 16 Draw a flow chart for Poisson's equation
Q. 17 Draw a flow chart for Laplace eueation

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 5 - CURVE FITTING \& REGRESSION ANALYSIS
SUBJECT: 302047 Numerical Methods and Optimization
COURSE : TE (2015 Pattern)
\section*{THEORY QUESTIONS}

Q. 1 If P is the pull required to lift a load W by means of a pulley block, find a liner law
of the form $\mathrm{P}=\mathrm{mW}+\mathrm{c}$ connecting P and W , using following data:

$\mathrm{P}=$	12	15	21	25
$\mathrm{~W}=$	50	70	100	120

Where P and W are taken in kg-wt. Compute P when $\mathrm{W}=150 \mathrm{~kg}$.
Q. 2 By the method of least squares, find the straight line that best fits the following
data:

x	1	2	3	4	5
y	14	27	40	55	68

Q. 3 Fit a curve $y=\mathrm{ax}^{\mathrm{b}}$ using following data

X	2000	3000	4000	5000	6000
Y	15	15.5	16	17	18

Q. 4 In some determination of the value v of carbon dioxide dissolved in a given
volume of water at different temperature Ә, the following pair of values were obtained.

$Ә$	0	5	10	15
v	1.80	1.45	1.18	1.00

Obtain by method of least square, a relation of the form $v=a+b$ Ə which best fit to these observations.
Q. 5 The pressure of the gas corresponding to various volume V is measured, given by the following data. Fit the data to the equation $\mathbf{P V}^{\gamma}=\mathbf{c}$

$\mathrm{V}\left(\mathrm{cm}^{3}\right)$	50	60	70	90	100
$\mathrm{P}\left(\mathrm{kg} / \mathrm{cm}^{3}\right)$	64.7	51.3	40.5	25.9	78

Q. 6 Using method of least squares, fit a relation of the form $y=a b^{x}$ to the following data:

x	2	3	4	5	6
y	144	172.8	207.4	248.8	298.5

Q. $7 \quad$ Fit a geometric curve for $y=a x^{b}$ for the following data:

x	5	15	20	25	30
y	0.5	1	1.5	2	2.5

Q. 8 Using method of least squares, fit a relation of the form $y=A . e^{b x}$ to the following data:

x	1	2	3	4	5
y	4	6	8	9	12

Q. 9 Use Lagrange's Interpolation formula to find the value of y when $\mathrm{x}=10$

If the following values of $\mathrm{x} \& \mathrm{y}$ are given

x	5	6	9	11
y	12	13	14	16

Q. 10

Draw flow-chart for interpolation using Newton's Forward difference

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 5 - CURVE FITTING \& REGRESSION ANALYSIS
SUBJECT: 302047 Numerical Methods and Optimization
COURSE : TE (2015 Pattern)
THEORY QUESTIONS

Interpolation.
Q. 11 Find the polynomial passing through points $(0,1)(1,1)(2,7)(3,25)(4,61)(5,12)$
using Newton's interpolation formula and hence find y and $d y / d x$ at $x=0.5$
Q. 12 Use the exponential model for $y=a e^{b x}$ to fit the data:

\boldsymbol{x}	2	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
\boldsymbol{y}	25	38	$\mathbf{5 6}$	$\mathbf{8 4}$

Q. 13 The pressure and volume of a gas are related by the equation $\mathrm{pV} \gamma=\mathrm{k}, \gamma$ and k being
constants. Fit this equations for the following set of observations:

p (kg/cm2)	0.5	1.0	1.5	2.0	2.5	3.0
V (liters)	1.62	1.00	0.75	0.62	0.52	0.46

Q. 14 Explain the term 'Interpolation', 'Extrapolation' and 'Inverse interpolation'.
Q. 153 A set of x and y are given below using Newton's forward interpolation formula
find $y(1.105)$.

X	1.0	1.1	1.2	1.3	1.4	1.5	1.6
Y	0.0	0.331	0.728	1.207	1.744	2.375	3.096

Q. 16 A set of values x and $f(x)$ are given below. Using Lagrange's interpolation formula, find f(9)

X	5	7	11	13	17
$\mathrm{~F}(\mathrm{x})$	150	392	1452	2366	5202

Q. 12
Q. 13 Find value of y for $\mathrm{x}=0.5$ for the following table of x, y values using Newton's
forward difference formula

X	0	1	2	3	4
Y	1	5	25	100	250

Q. 14 Apply the Hermite's formula to find a polynomial from the following data and then find $y(0.5)$

X	Y	Y^{\prime}
0	0	0
1	1	0
2	0	0

Q. 15 Apply Hermite Interpolation to find the value of $\mathrm{f}(0.4)$ for the given table

X	$\mathrm{F}(\mathrm{x})$	$\mathrm{F}^{\prime}(\mathrm{x})$
0	0	0
1	1	2

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 6 - NUMERICAL INTEGRATION
SUBJECT: 302047 Numerical Methods and Optimization COURSE : TE (2015 Pattern)

THEORY QUESTIONS

Trapezoidal Rule

Q. $1 \quad$ Use trapezoidal rule to evaluate $\int_{0}^{1} x^{3} d x$ considering five sub-intervals
Q. 2 Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Trapezoidal rule.
Q. 3 Given that:

x	4.0	4.2	4.4	4.6	4.8	5.0	5.2
$\log x$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Evaluate $\int_{4}^{5.2} \log x d x$
Q. 4 Evaluate following integrals by applying trapezoidal rule:
(i) $\int_{0}^{2}\left(3 x^{2}+2 x-5\right) d x$ for $\mathrm{n}=5$
(ii) $\int_{0}^{2}\left(3 x^{3}+2 x^{2}-1\right) d x \quad$ for $\mathrm{n}=5$
(iii) $\int_{0}^{\pi}(3 \cos x+5) d x \quad$ for $\mathrm{n}=8$
Q. 5 Estimate the following my trapezoidal method.
(i) $\int_{1}^{3} \frac{d x}{x} \quad \mathrm{n}=8$
(ii) $\int_{1}^{2} \frac{e^{x} d x}{x} \quad \mathrm{n}=4$
(iii) $\int_{1}^{5} e^{-x^{2}} d x \quad \mathrm{n}=8$

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 6 - NUMERICAL INTEGRATION
SUBJECT: 302047 Numerical Methods and Optimization
COURSE : TE (2015 Pattern)
THEORY QUESTIONS
(iv) $\int_{0}^{3} \cos ^{2} x d x \quad \mathrm{n}=6$
(v) $\int_{0}^{\pi} \sqrt{1+3 \cos ^{2} x d x} \quad \mathrm{n}=6$
(vi) $\int_{0}^{2}\left(e^{x^{2}}-1\right) \mathrm{dx} \quad \mathrm{n}=8$

Simpson's $1 / 3^{\text {rd }}$ Rule

Q. 6 Use Simpson's $1 / 3^{\text {rd }}$ rule to find $\int_{0}^{0.6} e^{-x^{2}} d x$ by taking 7 ordinates.
Q. 7 The velocity $\mathrm{v}(\mathrm{km} / \mathrm{min})$ of a moped which starts from rest, is given at fixed intervals of time $\mathrm{t}(\mathrm{min})$ as follows:

$t:$	2	4	6	8	10	12	14	16	18	20
$v:$	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes.
Q. 8 A solid of revolution is formed by rotating about the x -axis, the area between the x-axis, the lines $x=0$ and $x=1$ and a curve through the points with the following co-ordinates :

$x:$	0.00	0.25	0.50	0.75	1.00
$y:$	1.0000	0.9896	0.9589	0.9089	0.8415

Estimate the volume of the solid formed using Simpson's $1 / 3^{\text {rd }}$ rule.
Calculate the value of $\int_{0}^{\pi} \sin x d x$ by Simpson's $1 / 3^{\text {rd }}$ rule, using 11 ordinates. Verify your answer by direct integration.
Q. 10

Evaluate $\int_{4}^{5.2} \log x d x$ by Simpson's $1 / 3^{\text {rd }}$ rule, using given table :

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 6 - NUMERICAL INTEGRATION

SUBJECT: 302047 Numerical Methods and Optimization
COURSE : TE (2015 Pattern)
THEORY QUESTIONS

$x:$	4.0	4.2	4.4	4.6	4.8	5.0	5.2
$l o$ g $x:$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Q. 11 The velocity v of a particle at distance s from a point on its path is given by 8 the table :

$s f t:$	0	10	20	30	40	50	60
v $f t / s:$	47	58	64	65	61	52	38

Estimate the time taken to travel 60 ft by using Simpson's $1 / 3^{\text {rd }}$ rule. Compare the result with Simpson's $3 / 8^{\text {th }}$ rule.
Q. 12 The following table gives the velocity v of a particle at time t :

$t($ sec $):$	0	2	4	6	8	10	12
$v(\mathrm{~m} / \mathrm{s}):$	4	6	16	34	60	94	136

Find the distance moved by the particle in 12 seconds and also the acceleration at time $\mathrm{t}=2 \mathrm{sec}$
Q. 13 A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given in the table below. Using Simpson's $1 / 3^{\text {rd }}$ rule, find the velocity of the rocket at $t=80$ seconds.

$t(s):$	0	10	20	30	40	50	60	70	80
f $\left(\mathrm{~cm} / \mathrm{s}^{2}\right.$ $):$	30	31.63	33.34	35.47	37.75	40.3 3	43.25	46.69	50.67

Q. 14

Simpson's 3/8 ${ }^{\text {th }}$ Rule
Solve all Simpson's $1 / 3^{\text {rd }}$ problems by using Simpson's $3 / 8^{\text {th }}$ rule.

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 6 - NUMERICAL INTEGRATION
SUBJECT: 302047 Numerical Methods and Optimization
COURSE : TE (2015 Pattern)
THEORY QUESTIONS

Gauss Quadrature Method - 2 point and 3 - point

Q. 15 Evaluate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$ using Gauss formula for $\mathrm{n}=2$ and $\mathrm{n}=3$.

8

8
Q. 16 Using three point Gaussian quadrature formula, evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$
Q. 17 Evaluate $\int_{0}^{2} \frac{x^{2}+2 x+1}{1+(x+1)^{4}} d x$ by Gaussian 3-point formula.
Q. 18 Using Gaussian two-point formula compute $\int_{-2}^{2} e^{-x / 2} d x$
Q. 19 Evaluate $\int_{0}^{\pi} \sin x d x$ by using Gauss - Legendre two point formula Using three point Gaussian quadrature formula, evaluate :
(i) $\int_{1}^{5} \frac{1}{x} d x$
Q. 20
(ii) $\int_{2}^{4}\left(1+x^{2}\right) d x$
(iii) $\int_{0.2}^{1.5} e^{-x^{2}} d x$
Q. 21

Estimate the integral $I=\int_{0}^{10} \exp \left(\frac{-1}{1+x^{2}}\right) d x \quad$ by Gauss quadrature with $\mathrm{n}=2$ and $\mathrm{n}=3$.

Evaluate the integral $I=\int_{0}^{\pi / 2}\left(1-0.25 \sin ^{2} x\right)^{1 / 2} d x$ using 8 Gaussian quadrature. Assume a suitable value of n.

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

UNIT NO. 6 - NUMERICAL INTEGRATION
SUBJECT: 302047 Numerical Methods and Optimization COURSE : TE (2015 Pattern)

THEORY QUESTIONS

Numerical Integration: Double Integration Trapezoidal and Simpson's Rule

Q. 23

Using trapezoidal rule, evaluate $I=\int_{1}^{2} \int_{1}^{2} \frac{d x d y}{x+y}$
taking four sub-intervals.
Q. 24

Evaluate $I=\int_{0}^{1} \int_{0}^{1} x e^{y} d x d y$
using Trapezoidal rule ($\mathrm{h}=\mathrm{k}=0.5$).
Q. 25 Apply Trapezoidal rule to evaluate,
(i) $I=\int_{1}^{5} \int_{1}^{5} \frac{d x d y}{\sqrt{\left(x^{2}+y^{2}\right)}}$ taking two sub-intervals.
ii) $I=\int_{0}^{1} \int_{1}^{2} \frac{2 x y d x d y}{\left(1+x^{2}\right)\left(1+y^{2}\right)}$ taking $\mathrm{h}=\mathrm{k}=0.25$.
Q. 26 Evaluate $I=\int_{0}^{2} \int_{0}^{2} f(x, y) d x d y$ trapezoidal rule for the following table:

y / x	0	0.5	1	1.5	2
0	2	3	4	5	5

