UNIT NO. 1 – ROOTS OF EQUATION & ERROR APPROXIMATIONS

SUBJECT: 302047 Numerical Methods and Optimization

COURSE : TE (2015 Pattern)

	Errors	
Q.1	Explain: i) Round off error ii) Truncation error	4
Q.2	Explain: i) Round off error ii) Error Propagation	6
Q.3	What is Error Propagation? Explain Error Propagation with respect to-1. Addition 2. Subtraction 3. Multiplication 4. Division	6
Q.4	Explain: 1.Error Propagation 2.Round off error 3.Truncation error 4. Absolute error with example.	8
Q.5	Explain: 1.Rounding error 2.Truncation error 3. Absolute error 4. Relative error with example.	8
	Roots of Equation	
Q.6	Find the root of the equation $3x + \sin x - e^x = 0$ by the successive approximation Method correct to 2 decimal places.	6
Q.7	Volume of cylinder is calculated after measuring its diameter as (2.5 ± 0.02) m and its height as (4.8 ± 0.05) m respectively. Estimate the absolute error in calculation of volume.	6
Q.8	Determine the real root of the equation $ex = 5x$ using method of successive approximation. Assume initial guess $x = 0.15$ and solve upto 5 iterations	6
Q.9	Explain the concept of convergence in Newton Raphson method	6
Q.10	Draw the flow chart for Bisection method.	6
Q.11	Solve the equation $e^x cos x - 1.2 sin x - 0.5 = 0$ by successive approximation method. Do 3 iterations.	8
Q.12	Using Newton's iterative method, find the real root of $x \log_{10} x = 1.2$ correct to five decimal places.	8
Q.13	Find by Newton's method, the real root of the equation $3x = \cos x + 1$, correct to four decimal places.	8
Q.14	Using three iterations of bisection method, determine root of the equation. Initial guesses are $x_1 = 2.8$ and $x_2 = 3$, $f(x) = -0.9 x^2 + 1.7x + 2.5$	8
Q.15	Use Bisection method to obtain the root of $x ex -5 \cos x=0$ Start with initial guess -1.5 and 2.0. Desired accuracy is ± 0.01	9
Q.16	Draw the flow chart for Newton Raphson method	6
Q.17	Draw the flow chart for of Successive approximation method.	6

UNIT NO. 2 -<u>SIMULTANEOUS EQUATIONS</u>

SUBJECT: <u>302047 Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

Q.1	Solve the following system of equation using Gauss elimination method. 3x + 2y + 3z = 18; 2x + y + z = 10; x + 4y + 9z = 16	8
Q.2	When does the Gauss elimination method fail? Explain	2
Q.3	Solve following set of equations using Gauss Elimination Method. 3X + 6Y + Z = 16 2X + 4Y + 3Z = 13 X + 3Y + 2Z = 9	8
Q.4	Draw a flowchart for Gauss elimination method.	6
Q.5	Apply Gauss elimination method to solve the following equations:	Each 8
	i) x+4y-z=-5; x+y-6z=-12; 3x-y-z=4	
	ii) 10x-7y+3z+5u=6; -6x+8y-z-4u=5; 3x+y+4y+11u=2; 5x-9y-2z+4u=7	
	iii) x+y+z=9; 2x-3y+4z=13; 3x+4y+5z=40	
	iv) 2x+y+z=12; 3x+2y+3z=8; 5x+10y-8z=10	
	v) 2x+2y+z=12; 3x+2y+2z=8; 5x+10y-8z=10	
	vi) 2x1+4x2+x3=3; 3x1+2x2-2x3=-2; x1-x2+x3=6	
	vii) $5x_1+x_2+x_3+x_4=4$; $x_1+7x_2+x_3+x_4=12$; $x_1+x_2+6x_3+x_4=-5$; $x_1+x_2+x_3+4x_4=-6$	
	viii) 2x+y+z=10; 3x+2y+3z=18; x+4y+9z=16	
	ix) 2x-3y+z=-1; x+4y+5z=25; 3x-4y+z=2	
	x) x+3y+3z=16; x+4y+3z=18; x+3y+4z=19	
	xi) $2x_1+x_2+5x_3+x_4=5$; $x_1+x_2-3x_3+4x_4=-1$; $3x_1+6x_2-2x_3+x_4=8$; $2x_1+2x_2+2x_3-3x_4=2$	

UNIT NO. 2 -SIMULTANEOUS EQUATIONS

SUBJECT: <u>302047 Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

Q.6	Using Gauss Seidal method, solve the following set of equations up to 3 decimal places. 3x + y - z = 0, x + 2y + z = 0,	8
Q.7	x - y + 4z = 3 Using Gauss Seidal iteration method, solve the following set of equations up to 5 iteration 4x + 2z = 4, 5x + 2z = 3, 5x + 2z = 3,	8
Q.8	5x - 4y + 10z = 2 Apply Gauss – Seidal iteration method to solve the following equations:	Each
	i) 20x+y-2z=17; 3x+20y-z=-18; 2x-3y+20z=25	8
	ii) $10x_1-2x_2-x_3-x_4=3$; $-2x_1+10x_2-x_3-x_4=15$; $-x_1-x_2+10x_3-2x_4=27$; $-x_1-x_2-2x_3+10x_4=-9$ iii) $2x+y+6z=9$; $8x+3y+2z=13$; $x+5y+z=7$	
	iv) 10x+y+z=12; 2x+10y+z=13; 2x+2y+10z=14	
	v) 54x+y+z=110; 2x+15y+6z=72; -x+6y+27z=85	
	vi) 10x1-2x2-x3-x4=3; -2x1+10x2-x3-x4=15; -x1-x2+10x3-2x4=27; -x1-x2-2x3+10x4=-9	
Q.9 Q.10	Draw flow chart for Gauss – Seidal method Using Thomas Algorithm Method, solve the following set of simultaneous equations $5a - b = 5.5$; $-a + 5b - c = 5$; -b + 5c - d = 11.5; $-c + 5d = 16.5$	8
Q.11	Solve the following tri-diagonal system with the Thomas algorithm:	
	$ \begin{bmatrix} 2.04 & -1 & 0 & 0 & & \\ -1 & 2.04 & -1 & 0 & & \\ 0 & -1 & 2.04 & -1 & & \\ 0 & 0 & -1 & 2.04 & & \\ \end{bmatrix} \left(\begin{array}{c} T_1 & & \\ T_2 & & \\ T_3 & & \\ T_4 & & \\ \end{array} \right) = \left(\begin{array}{c} 40.8 \\ 0.8 \\ 0.8 \\ 200.8 \end{array} \right) $	
Q.12	Solve the following tri-diagonal system with the Thomas algorithm: $10x_1+2x_2=12$ $2x_1+9x_2+3x_3=14$ $x_2 + 10 x_3 + 4x_4 = 15$ $3x_1 + 11x_2 = 14$	8
Q.13	$3x_3 + 11x_4 = 14$ Draw flow chart for Thomas algorithm method	5

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

UNIT NO. 3 - OPTIMIZATION

SUBJECT: <u>302047</u> <u>Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

Q.1	Maximize Z = 6x1 + 4x2 subject to condition,	10
	$2x1 + 3x2 \le 100$	
	$4x1 + 2x2 \le 120$ $x1, x2 \ge 0$	
	Use Simplex Method to calculate x1, x2 and maximize profit Z.	
Q.2	Minimize Z = 2x + 3y subject to condition	8
	$2x + 4y \ge 80$	
	$4x + 2y \ge 100 \ x \ge 0, \ y \ge 0$	
Q.3	Define optimization. Write its engineering applications.	2
Q.4	A company is manufacturing two different types of products A and B. Each product	6
	has to be processed on two machines M1 and M1. Product A requires 2 hours on	
	machine M1 and 1 hour on machine M2. Product B requires 1 hour on machine M1	
	and 2 hours on machine M2. The available capacity of machine M1 is 104 hours	
	and that of machine M2 is 76 hours Profit per unit for product A is Rs.6 and that	
	for product B is Rs. 11.	
	i)Formulate the problem.	
	ii) Find the optimal solution by simplex method.	
Q.5	Determine the maximum value of root of equation.	5
	0.51 (x) - sin (x) by Newton's method. Take initial guess as 2 and do 4 iterations.	
Q.6	Write a short note on Genetic Algorithm.	3
Q.7	Maximize Z=6x+4y. Subjected to condition ,	10
	$2x+3y \le 100, 4x+2y \le 120, x \ge 0, y \ge 0$	
Q.8	Write the short note on optimization techniques Simulated annealing	4
Q.9	Minimize, Z=2x+3y.	6
	Constraints are, 2x+4y ≤ 80	
	$4x + 2y \le 100$ & x, $y \ge 0$.	

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

UNIT NO. 3 - OPTIMIZATION

SUBJECT: <u>302047</u> <u>Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

Q.10	Maximize, Z=2x ₁ + 5x ₂	10
	Constraints are, $x_1 + 4x_2 \le 24$	
	$3x_1 + x_2 \le 21$	
	$x_1 + x_2 \le 9, x_1, x_2 \ge 0.$	
Q.11	Maximize Z=1600x+1500y. Constraints are,	10
	5x+4y ≤ 500	
	$15x + 16y \le 1800 \& x \ge 0, y \ge 0$	
	$13x + 10y \le 1000 \otimes x \ge 0, y \ge 0$	
Q.12	Write the short note on the optimization technique Genetic algorithm	4
Q.12		

UNIT NO. 4 - <u>NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS</u>

SUBJECT: <u>302047</u> <u>Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

THEORY QUESTIONS

Taylor's series method

Q.1	Solve $y = x + y$, $y(0) = 1$ by Taylor's series method. Hence find the values of y at $x = 0.1$ and $x = 0.2$.	8
Q.2	Find by Taylor's series method, the values of y at $x = 0.1$ and $x = 0.2$ to five	8
	places of decimals from $\frac{dy}{dx} = x^2 y - I$, $y(0) = I$.	
Q.3	Using Taylor's series method, compute y (0.2) to three places of decimal	8
	from $\frac{dy}{dx} = 1 - 2xy$ given that $y(0) = 0$.	
Q.4	Solve $y^{*} = y^{2} + x$, $y(0) = 1$ using Taylor's series method and compute $y(0.1)$ and $y(0.2)$.	8
	Euler's method	
Q.5	Using Euler's method, find an approximate value of y corresponding to $x = 1$	8
	given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$.	
Q.6	Given $\frac{dy}{dx} = y - x/y + x$ with initial condition $y = 1$ at $x = 0$; find y for $x = 0$	8

0.1 by Euler's method.

Q.7 Using modified Euler's method, find an approximate value of y when x = 0.3 8 given that $\frac{dy}{dx} = x + y$ and y = 1 when x = 0.

8

Q.8 Solve the following by Euler's modified method: $\frac{dy}{dx} = log(x + y), y(0) = 2$

Runge – Kutta 2nd order

Q.9 Solve the following differential equation to find value of 'y' at given value 8 of 'x' by using Runge Kutta method of 2^{th} order. Solve the equation

$$2\frac{d^2y}{dx^2} = 3x\frac{dy}{dx} - 9y + 9$$

Subject to the conditions y(0) = 1, y'(0) = -2 compute y for x = 0.1Q.10 Solve the following differential equation to find value of 'y' at given value 8

of 'x' by using Runge Kutta method of 2th order.

$$\frac{dy}{dx} = x + y / z$$
 and $\frac{dz}{dx} = x^*y + z$ with x0=0.5 and y0=1.5, z0=1

compute y and z for x = 0.6

Runge – Kutta 4th order

Q.11 Apply Runge – Kutta fourth order method to find an approximate value of y 8
when
$$x = 0.2$$
 given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$.

Q.12 Using Runge – Kutta method of fourth order, solve $\frac{dy}{dx} = y^2 - x^2 / y^2 + x^2$

UNIT NO. 4 - NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS

SUBJECT: <u>302047</u> <u>Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

THEORY QUESTIONS

with y(0) = 1 at x = 0.2, 0.4.

- Q.13 Use Runge Kutta method to approximate y when x = 1.1, given that y = 1.2 when x = 1 and $\frac{dy}{dx} = 3x + y^2$. Q.14 Using fourth order Runge – Kutta method, find y at x = 0.1 given that
- Q.14 Using fourth order Runge Kutta method, find y at x = 0.1 given that $\frac{dy}{dx} = 3e^{x} + 2y, y(0) = 0 \text{ and } h = 0.1.$
- Q.15 $\frac{dx}{dx^2}$ Solve the equation $\frac{d^2y}{dx^2} + 2\frac{d^2u}{dy^2} = \frac{1}{xy}$ corresponding to grid shown in the following fig.

Q.16 Draw a flow chart for Poisson's equation

8

8

Q.17 Draw a flow chart for Laplace eueation

UNIT NO. 5 - CURVE FITTING & REGRESSION ANALYSIS

SUBJECT: 302047 Numerical Methods and Optimization COURSE : TE (2015 Pattern)

THEORY QUESTIONS

0.1 If P is the pull required to lift a load W by means of a pulley block, find a liner law 8 of the form P = mW + c connecting P and W, using following data:

P =	12	15	21	25
W =	50	70	100	120
	1 3 3 7 1	· 1 · C	· D 1 W 150	1

Where P and W are taken in kg-wt. Compute P when W = 150 kg.

Q.3

Q.7

By the method of least squares, find the straight line that best fits the following Q.2 data:

Х	1	2	3	4	5	
У	14	27	40	55	68	
Fit a curve $y = ax^{b}$ using following data						
Х	2000	3000	4000	5000	6000	
Y	15	15.5	16	17	18	

8

8

8

8

6

In some determination of the value v of carbon dioxide dissolved in a given 0.4 volume of water at different temperature ∂ , the following pair of values were obtained.

Ә	0	5	10	15
v	1.80	1.45	1.18	1.00
01 1 1	1 01	4 . •	0.1.0	1 0 1 1

Obtain by method of least square, a relation of the form $v = a + b \partial$ which best fit to these observations.

The pressure of the gas corresponding to various volume V is measured, Q.5 8 given by the following data. Fit the data to the equation $\mathbf{PV}^{\gamma} = \mathbf{c}$

$V(cm^3)$	50	60	70	90	100
$P(kg/cm^3)$	64.7	51.3	40.5	25.9	78

Q.6 Using method of least squares, fit a relation of the form $y = ab^{x}$ to the 8 following data:

x	2	3	4	5	6	
у	144	172.8	207.4	248.8	298.5	
Fit a geometric curve for $y = ax^b$ for the following data:						

20 5 15 25 30 х 2 2.5 0.5 1 1.5 y Using method of least squares, fit a relation of the form $y = A e^{bx}$ to the Q.8

following data: 2 3 4 5 1 х 9 4 8 12 y 6

Q.9 Use Lagrange's Interpolation formula to find the value of y when x = 10If the following values of x & y are given

x	5	6	9	11
У	12	13	14	16

Q.10 Draw flow-chart for interpolation using Newton's Forward difference

	_
C	1

UNIT NO. 5 - CURVE FITTING & REGRESSION ANALYSIS

SUBJECT: <u>302047</u> <u>Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

THEORY QUESTIONS

Interpolation.

Q.11	Find the polynomial passing through points (0,1) (1,1) (2,7) (3,25) (4,61)(5,12)	8
	using Newton's interpolation formula and hence find y and dy/dx at x=0.5	

	x		2		4	6			8			
	у		25		38	56			84		1	
;						related by					γa	nd k beir
	constants	s. Fit tl			s for the fo	ollowing se	t of	obse	rvatio	ns:		
	p (kg/ci		0.		1.0	1.5		2.0		2.5		3.0
	V (liter	/	1.	-	1.00	0.75).62		0.52		0.46
ŀ	-			-		trapolation				-		
5			d y a	are given	n below us	ing Newton	n's f	forwa	ard int	erpolati	on	formula
	find y(1.	105).										
	Х	1.0		1.1	1.2	1.3		1.4		1.5		1.6
	Y	0.0		0.331	0.728	1.207		1.74		2.375		3.096
6	A set of	values	s x ai	nd f(x) a	re given b	elow. Usin	g La	agrar	nge's i	nterpola	atio	n formula
	find f(9)				1						1	
	Х		5		7	11			13		17	7
	F(x)		150		392	1452			2366			202
2	F(x)		150		392				2366			
2 3	Find valu		/ for	x=0.5 f	or the follo			x,y v			52	202
	Find valu		/ for	x=0.5 f	or the follo	1452 owing table		x,y v	alues		52 ewt	202
	Find valu forward	differe	/ for	x=0.5 f	or the follo	1452 owing table 2		x,y v	alues		52 ewt	202 ton's
	Find valu forward o X Y	differe	y for ence 0 1	x=0.5 fo formula	or the follo	1452 owing table 2 25	of		alues 3 100	using N	52 ewt	202 ton's
	Find valu forward o X Y Apply th	differe e Herr	y for ence 0 1	x=0.5 fo formula	or the follo	1452 owing table 2	of		alues 3 100	using N	52 ewt	202 ton's
	Find valu forward o X Y Apply th find y(0.	differe e Herr	y for ence 0 1	x=0.5 fo formula	or the follo 1 5 1 a to find	1452 owing table 2 25	of		alues 3 100 the fol	using N	52 ewt	202 ton's
	Find valu forward o X Y Apply th	differe e Herr	y for ence 0 1	x=0.5 fo formula	or the follo 1 5 Ila to find Y	1452 owing table 2 25	of		alues $\frac{3}{100}$ the fol Y'	using N	52 ewt	202 ton's
3	Find valu forward of X Y Apply th find y(0. X 0	differe e Herr	y for ence 0 1	x=0.5 fo formula	or the follo 1 5 1 a to find	1452 owing table 2 25	of		$\frac{3}{100}$ the fol $\frac{Y'}{0}$	using N	52 ewt	202 ton's
	Find valu forward of X Y Apply th find y(0. X	differe e Herr	y for ence 0 1	x=0.5 fo formula	or the follo 1 5 Ila to find Y	1452 owing table 2 25	of		alues $\frac{3}{100}$ the fol Y'	using N	52 ewt	202 ton's
3	Find valu forward o X Y Apply th find y(0. X 0 1 2	e Herr 5)	y for ence 0 1 mite	x=0.5 fo formula 's formu	or the follo 1 5 la to find Y 0 1 0	1452 owing table 2 25 a polynomi	al fr	rom	$\frac{3}{100}$ the fold $\frac{Y'}{0}$ 0 0	using N lowing	ewt	202 ton's 60 a and the
3	Find valu forward o X Y Apply th find y(0. X 0 1 2	e Herr 5)	y for ence 0 1 mite	x=0.5 fo formula 's formu	or the follo 1 5 la to find Y 0 1 0	1452 owing table 2 25	al fr	rom	alues 3 100 the fol Y' 0 0 0 for the	using N lowing given ta	ewt 4 25 data	202 ton's 60 a and the
3	Find valu forward o X Y Apply th find y(0. X 0 1 2	e Herr 5)	y for ence 0 1 mite	x=0.5 fo formula 's formu	or the follo 1 5 la to find Y 0 1 0	1452 owing table 2 25 a polynomi	al fr	rom	$\frac{3}{100}$ the fold $\frac{Y'}{0}$ 0 0	using N lowing given ta	ewt 4 25 data	202 ton's 60 a and the
3	Find valu forward of X Y Apply th find y(0. X 0 1 2 Apply H	e Herr 5)	y for ence 0 1 mite	x=0.5 fo formula 's formu	or the follo 1 5 la to find Y 0 1 0 on to find t	1452 owing table 2 25 a polynomi	al fr	rom	alues 3 100 the fol Y' 0 0 0 for the	using N lowing given ta	ewt 4 25 data	202 ton's 60 a and the

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK UNIT NO. 6 – <u>NUMERICAL INTEGRATION</u>

SUBJECT: <u>302047</u> <u>Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

THEORY QUESTIONS

Trapezoidal Rule

Q.1 Use trapezoidal rule to evaluate $\int_0^1 x^3 dx$ considering five sub-intervals

- Q.2 Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule.
- Q.3 Given that:

x	4.0	4.2	4.4	4.6	4.8	5.0	5.2
log x				1.5261	1.5686	1.6094	1.6487
Evaluate	$\int_{4}^{5.2} \log$	gx dx	I	I	I	L	

Q.4 Evaluate following integrals by applying trapezoidal rule:

(i)
$$\int_0^2 (3x^2 + 2x - 5) dx$$
 for $n = 5$
(ii) $\int_0^2 (3x^3 + 2x^2 - 1) dx$ for $n = 5$
(iii) $\int_0^{\pi} (3\cos x + 5) dx$ for $n = 8$

Q.5 Estimate the following my trapezoidal method.

(i)
$$\int_{1}^{3} \frac{dx}{x} \qquad n = 8$$

(ii)
$$\int_{1}^{2} \frac{e^{x} dx}{x} \qquad n = 4$$

(iii)
$$\int_{1}^{5} e^{-x^{2}} dx \qquad n = 8$$

8

6

8

8

UNIT NO. 6 – <u>NUMERICAL INTEGRATION</u>

SUBJECT: <u>302047</u> <u>Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

THEORY QUESTIONS

(iv)
$$\int_0^3 \cos^2 x \, dx \qquad n=6$$

(v)
$$\int_0^{\pi} \sqrt{1 + 3\cos^2 x \, dx}$$
 n = 6

(vi)
$$\int_0^2 (e^{x^2} - 1) dx$$
 $n = 8$

Simpson's 1/3rd Rule

8

8

8

- Q.6 Use Simpson's $1/3^{rd}$ rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking 7 ordinates.
- Q.7 The velocity v (km/min) of a moped which starts from rest, is given at fixed 8 intervals of time t (min) as follows:

<i>t</i> :	2	4	6	8	10	12	14	16	18	20
<i>v</i> :	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes.

Q.8 A solid of revolution is formed by rotating about the x-axis, the area between 8 the x-axis, the lines x=0 and x=1 and a curve through the points with the following co-ordinates :

<i>x:</i>	0.00	0.25	0.50	0.75	1.00
<i>y</i> :	1.0000	0.9896	0.9589	0.9089	0.8415

Estimate the volume of the solid formed using Simpson's 1/3rd rule.

- Q.9 Calculate the value of $\int_0^{\pi} \sin x \, dx$ by Simpson's 1/3rd rule, using 11 ordinates. Verify your answer by direct integration.
- Q.10 Evaluate $\int_{4}^{5.2} \log x \, dx$ by Simpson's $1/3^{rd}$ rule, using given table :

UNIT NO. 6 – <u>NUMERICAL INTEGRATION</u>

SUBJECT: 302047 Numerical Methods and Optimization COURSE : TE (2015 Pattern)

THEORY QUESTIONS

<i>x:</i>	4.0	4.2	4.4	4.6	4.8	5.0	5.2
lo g x:	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

The velocity v of a particle at distance s from a point on its path is given by 8 Q.11 the table :

s ft:	0	10	20	30	40	50	60
v ft/s:	47	58	64	65	61	52	38

Estimate the time taken to travel 60 ft by using Simpson's 1/3rd rule. Compare the result with Simpson's $3/8^{th}$ rule.

Q.12 The following table gives the velocity v of a particle at time t :

t (sec):	0	2	4	6	8	10	12
v (m/s):	4	6	16	34	60	94	136

Find the distance moved by the particle in 12 seconds and also the acceleration at time t = 2 sec

Q.13 A rocket is launched from the ground. Its acceleration is registered during the 8 first 80 seconds and is given in the table below. Using Simpson's 1/3rd rule, find the velocity of the rocket at t = 80 seconds.

t (s):	0	10	20	30	40	50	60	70	80
$f \\ (cm/s^2):$	30	31.63	33.34	35.47	37.75	40.3 3	43.25	46.69	50.67
			Sim	pson's 3	3/8 th Ru	le			

Q.14

Simpson's 3/8' Rule

Solve all Simpson's 1/3rd problems by using Simpson's 3/8th rule.

8

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK UNIT NO. 6 – <u>NUMERICAL INTEGRATION</u> SUBJECT: <u>302047 Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

THEORY QUESTIONS

8

8

Gauss Quadrature Method – 2 point and 3 – point

Q.15	Evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ using Gauss formula for n = 2 and n = 3.	8
------	--	---

Q.16 Using three point Gaussian quadrature formula, evaluate $\int_0^1 \frac{dx}{1+x^2}$

Q.17 Evaluate
$$\int_0^2 \frac{x^2 + 2x + 1}{1 + (x + 1)^4} dx$$
 by Gaussian 3-point formula.

Q.18 Using Gaussian two-point formula compute $\int_{-2}^{2} e^{-x/2} dx$ 8

Q.19 Evaluate $\int_0^{\pi} \sin x \, dx$ by using Gauss – Legendre two point formula 8

Using three point Gaussian quadrature formula, evaluate : Each 8

(i)
$$\int_{1}^{5} \frac{1}{x} dx$$

(iii)
$$\int_{0.2}^{1.5} e^{-x^2} dx$$

(ii) $\int_{-1}^{4} (1+x^2) dx$

Q.21 Estimate the integral $I = \int_0^{10} exp\left(\frac{-1}{1+x^2}\right) dx$ by Gauss quadrature 8 with n = 2 and n = 3.

Q.22 Evaluate the integral $I = \int_0^{\pi/2} (1 - 0.25 \sin^2 x)^{1/2} dx$ using Gaussian quadrature. Assume a suitable value of n.

UNIT NO. 6 - NUMERICAL INTEGRATION

SUBJECT: <u>302047</u> <u>Numerical Methods and Optimization</u> COURSE : TE (2015 Pattern)

THEORY QUESTIONS

Numerical Integration : Double Integration Trapezoidal and Simpson's Rule

Q.23 Using trapezoidal rule, evaluate $I = \int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x+y}$ 8

taking four sub-intervals.

^{Q.24} Evaluate
$$I = \int_0^1 \int_0^1 x e^y dx dy$$
 ⁸

using Trapezoidal rule (h=k=0.5).

Q.25 Apply Trapezoidal rule to evaluate,

(i) $I = \int_{1}^{5} \int_{1}^{5} \frac{dxdy}{\sqrt{(x^2+y^2)}}$ taking two sub-intervals.

ii)
$$I = \int_0^1 \int_1^2 \frac{2xy \, dx \, dy}{(1+x^2)(1+y^2)}$$
 taking $h = k = 0.25$.

Q.26 Evaluate $I = \int_0^2 \int_0^2 f(x, y) dx dy$ trapezoidal rule for the following table:

y/x	0	0.5	1	1.5	2
0	2	3	4	5	5

Each