

(Approved by AICTE, New Delhi, Govt. of Maharashtra & affiliated to SPPU, DTE Code: EN6634)

(Accredited by NAAC with 'A' Grade)

T.E. (MECHANICAL ENGINEERING)

302051: Manufacturing Process-II

UNIT 01: Theory of Metal Cutting

Q.1	Explain different types of tool wear and remedies for the same.	4
Q.2	Derive the equation for velocity relation.	4
Q.3	Write a note on Types of Chips	5
Q.4	Derive the equation for shear angle with Chip ratio thickness.	4
Q.5	Define Machinability and explain factors affecting Machinability	5
Q.6	Write a note on types of cutting fluids	4
Q.7	Explain Chip breakers with its function.	4
Q.8	Explain Turning Dynamometer	5
Q.9	Explain factors that affect tool life. And define tool life.	4
Q.10	With the help of a neat sketch explain Single Point Cutting Tool Geometry	6
Q.11	What are chip Breakers? Why they are needed?	4
Q.12	With the help of neat sketch explain the relation between shear velocity, cutting velocity and chip flow velocity.	4
Q.13	Draw the Merchant's circle of forces and explain the different quantities involved	4
Q.14	In orthogonal cutting of steel bar with 80mm dia on lathe with following data Cutting Speed = 36m/min ; Rake Angle = 13° ; Feed Rate = 0.2 mm/rev ; Cutting Force = 1300N ; Thrust Force = 580 N and Chip Thickness = 0.45 mm Calculate Shear Angle; Friction Force and Shear Stress.	6
Q.15	A tool life of 60 minute is obtained at a cutting speed of 19m/min and 12 minute at 47 m/min. Determine Taylors Tool life equation and find tool life when speed is 32m/min	6

Q.16	In orthogonal cutting of steel bar with 80mm dia. on lathe with following data Cutting Speed = 45m/min; Rake Angle = 10°; Feed Rate = 0.2 mm/rev; Cutting Force = 970N; Thrust Force = 450 N and Chip Thickness = 0.4 mm Calculate Coefficient of Friction, Shear Strain and Cutting Power					
Q.17	The following data in orthogonal cutting is available Rake Angle = 13° Chip Thickness ration 0.37 Chip Thickness = 1.2 mm Width of Cut = 2.75 mm Shear Stress = 285 N/mm ² Coefficient of friction 0.57 Calculate Shear Angle, Chip thickness before cut, and Cutting Force.					
Q.18	In orthogonal cutting of steel bar with 60mm dia. on lathe with following data Cutting Speed = 100m/min ; Rake Angle = 10° ; Feed Rate = 0.2 mm/rev ; Cutting Force = 200N ; Thrust Force = 70 N and Chip Thickness = 0.3 mm Calculate Coefficient of Friction, Shear angle, Chip flow velocity, Friction angle	6				
Q.19	The following data from orthogonal cutting is available: Rake angle = 10°, Chip thickness ratio = 0.38, Uncut chip thickness = 0.5mm, width of cut = 3mm, Shear stress = 270 N/mm2, Coefficient of friction = 0.7 Determine Cutting Force and Thrust force.					
Q.20	A tool life of 70 minute is obtain at a cutting speed of 15 m/min and 7 minute at 50 m/min. Determine the i) Taylor's tool life equation. ii) Calculate percentage increase in tool life when cutting speed is reduced by 50%.	5				
Q.21	A 300 mm diameter bar is turned as 45 rev/min with depth of cut of 2mm and feed of 0.3 mm/rev. The forces measured at the cutting tool point are- i) Cutting force = 1850 N ii) Feed force = 450 N. Calculate: 1) Power Consumption. 2) Specific Cutting Energy.	4				
Q.22	A 250 mm diameter bar is turned at 40 rev/min. with depth of cut 2mm and feed of 0.3 mm/rev. Calculate power consumption and specific cutting energy with cutting force 1500N and feed force 400N.	4				

(Approved by AICTE, New Delhi, Govt. of Maharashtra & affiliated to SPPU, DTE Code: EN6634)

(Accredited by NAAC with 'A' Grade)

T.E. (MECHANICAL ENGINEERING)

302051: Manufacturing Process-II

UNIT 02: Machine Tools and their applications

Q.1	Write classification of boring machines and explain Jig boring machine.				
Q.2	Explain with neat sketch Radial drilling machine				
Q.3	Explain with neat sketch Sensitive Drilling Machine 6				
Q.4	Explain various operations on drilling machine.				
Q.5	Explain Continuous broaching machine with neat sketch.				
Q.6	Differentiate between up-milling and down-milling 5				
Q.7	Explain with neat sketch various types of Milling Cutters. 5				
Q.8	Explain broach terminology. 5				
Q.9	Explain following operations on drilling machine. 1) Countersinking 2) Trepanning 3) Spot Facing				
Q.10	Explain Geometry of twist Drill 4				
Q.11	Explain fixed bed type Milling machine with its classification 5				
Q.12	Discuss the geometry of Broach teeth with neat sketch.				
Q.13	Explain various operations on Milling Machine 6				
Q.14	A hole of 25 mm diameter and 70mm depth is to be drilled. The suggested feed is 1.3 mm per revolution and the cutting speed 60m/min. Assuming tool approach and tool over travel as 6mm, calculate; i) Spindle Speed ii) Feed speed iii) Machining Time				
Q.15	A spur gear of 63 teeth is to milled on milling machine; write dividing head	5			
	calculation to obtain 63 divisions of the gear blank				
	Plate1:15,16,17,18,19,20 Plate2:21,23,27,29,31,33 Plate3: 37,39, 41,43,47,49				

- Q.16 A plain surface 60mm wide and 230mm long is to be milled on a horizontal milling machine with cutter diameter 80mm and speed 50m/min. Take feed per tooth 0.11mm and number of teeth on cutter 12. Calculate machining time.
- Q.17 A hole of 30mm diameter and 75mm depth is to be drilled. The suggested feed is 1.3
 6 mm per revolution and the cutting speed 62m/min. Assuming tool approach as 6mm,
 calculate; i) Spindle Speed ii) Feed speed iii) Machining Time
- Q.18 A spur gear of 69 teeth is to milled on milling machine; write dividing head calculation to obtain 69 divisions of the gear blank.
 Plate1:15,16,17,18,19,20 Plate2:21,23,27,29,31,33 Plate 3: 37,39, 41,43,47,49

(Approved by AICTE, New Delhi, Govt. of Maharashtra & affiliated to SPPU, DTE Code: EN6634)

(Accredited by NAAC with 'A' Grade)

T.E. (MECHANICAL ENGINEERING)

302051: Manufacturing Process-II UNIT 03: Finishing Processes

Ų.1	"W-A-10-E-5-V-25"			
Q.2	Explain Dressing, Truing and Balancing of Grinding wheels	6		
Q.3	Explain selection factors of Grinding Wheel	6		
Q.4	Explain with neat sketch internal and external center- less grinding.	6		
Q.5	Differentiate between honing and lapping	4		
Q.6	Explain Burnishing	5		
Q.7	Explain with neat sketch types of grinding machines.	5		
Q.8	Write note on types of Abrasives.	5		
Q.9	Differentiate between buffing and burnishing with figure.	5		
Q.10	Write a note with diagrams on shapes of Grinding wheel	5		
Q.11	Write a note on bonding Materials	5		
Q.12	Explain the meaning of each following letter mentioned on the grinding wheel "W-C-10-E-5-V-17"	6		
Q.13	Describe with neat sketch tool and cutter grinder	6		
Q.14	Explain meaning of "Grit"; "Grade" and "Structure"	6		
Q.15	For finish grinding operations, calculate machining time if cutting speed is 20 m/min. Dia.of job is 40 mm, Depth of cut is 0.03 mm, stock to remove 0.6 mm for 230 mm long job with wheel having face width 70 mm. Take k = 1.6	6		
Q.16	For Rough grinding operations, calculate machining time if cutting speed is 20 m/min. Dia.of job is 45 mm, Depth of cut is 0.02 mm, stock to remove 0.1 mm for	5		
	250 mm long job with wheel having face width 60 mm.			
Q.17	For finish grinding operations, calculate machining time if cutting speed is 30 m/min. Dia.of job is 45 mm, Depth of cut is 0.01 mm, stock to remove 0.1 mm for 250 mm long job with wheel having face width 60 mm.	5		

(Approved by AICTE, New Delhi, Govt. of Maharashtra & affiliated to SPPU, DTE Code: EN6634)

(Accredited by NAAC with 'A' Grade)

T.E. (MECHANICAL ENGINEERING)

302051: Manufacturing Process-II

UNIT 04:Advanced Machining Processes

Q.1	Explain the principle, applications and working of AJM process with neat sketch.	8
Q.2	Explain the principle, applications and working of USM process with neat sketch.	8
Q.3	Compare EDM and LBM process	8
Q.4	Justify the need of unconventional manufacturing process in today's industries.	8
Q.5	Compare AJM and USM	8
Q.6	Explain the principle, applications and working of ECM process with neat	8
Q.7	Explain the principle, applications and working of EDM process with neat sketch	8
Q.8	Explain the principle, applications and working of LBM process with neat sketch	8
0.9	Compare ECM and EDM	8

KJ's Educational Institute

(Approved by AICTE, New Delhi, Govt. of Maharashtra & affiliated to SPPU, DTE Code: EN6634) (Accredited by NAAC with 'A' Grade)

T.E. (MECHANICAL ENGINEERING)

302051: Manufacturing Process-II **UNIT 05:CNC Technology**

Q.1	Write a note on DNC.			
Q.2	Describe new trends in CNC cutting tools.			
Q.3	Explain Open loop and close loop CNC system			
Q.4	What is Canned Cycles and Sub-routine in CNC Programming			
Q.5	Write a note on Modular tooling system for turning			
Q.6	Explain with sketch Automatic Tool Changer (ATC) and Automatic Pallet changer (APC)			
Q.7	Write a note on Stepper Motor and Servo Motor drives Explain	6		
Q.8	Turning tool specification (ISO 1832 Coding system).	4		
Q.9	Explain need of tool offsets and Radius compensations in CNC programming.	4		
Q.10	Which are basic elements of CNC machine	6		
Q.11	Explain with neat sketch NC motion control systems	5		
Q.12	Explain following Codes.: G02; G91;G98; M03; M02	5		
Q.13	Explain following Codes.: G03; G91; M00; M08; M06; M09 (Any Four)	4		
Q.14	Write note on Types of Machining Centers. What are its advantages and disadvantages?	6		
Q.15	Differentiate between Absolute and Incremental Co-ordinate System	5		
Q.16	What are G codes and M codes explain. What is open loop and close	4		
Q.17	loop system?	5		
Λ 1Q	What is 2 axis: 3 axis and 5 axis machining centers?	6		

(Approved by AICTE, New Delhi, Govt. of Maharashtra & affiliated to SPPU, DTE Code: EN6634)

(Accredited by NAAC with 'A' Grade)

T.E. (MECHANICAL ENGINEERING)

302051: Manufacturing Process-II <u>UNIT 06: Jigs and Fixtures</u>

Q.1	Explain principles of clamping.	6
Q.2	Describe Poka Yoke concept.	4
Q.3	Explain concept of Modular Fixturing	6
Q.4	List and explain in brief various types of fixtures.	4
Q.5	Explain with neat sketch any three Quick Clamping devices.	6
Q.6	Differentiate between Jig and Fixture.	4
Q.7	Explain 3-2-1 principal of location.	4
Q.8	Explain design Principal of Jig and Fixture.	6
Q.9	Explain with neat sketch Locating Devices used in Jig and Fixture.	6
Q.10	Explain with figure Diamond Pin Locator.	4
Q.11	Explain principles of Locating.	6
Q.12	What are advantages of Jig and fixtures?	6
Q.13	Write note on Milling Fixture	6
Q.14	Write note on Indexing Jigs and Fixtures	6
Q.15	Explain any Two types of Indexing Devices	6