Faculty of Engineering Savitribai Phule Pune University, Pune

Maharashtra, India

Syllabus

for

Fourth Year of Computer Engineering (2015 Course)

(with effect from 2018-19)

www.unipune.ac.in

Prologue

It is with great pleasure and honor that I share the syllabi for Fourth Year of Computer Engineering (2015 Course) on behalf of Board of Studies (BoS), Computer Engineering. We, members of BoS are giving our best to streamline the processes and curricula design at both UG and PG programs.

It is always the strenuous task to balance the syllabus with the blend of core subjects, current developments and exotic subjects. By considering all the aspects with adequate prudence the contents are designed to make the graduate competent enough as far as employability is concerned. It is absolutely necessary and justified to add sufficient flexibility in the given constraints leading the curriculum design near to perfection.

It may be highly subjective to include or exclude the courses, but benefit of the learner is always the nucleus the process. Many thoughts, suggestions, recommendations and directions help us to come up with the final contents. For the final year finishing touch is absolutely necessary which is provided with project based learning at the most.

I sincerely thank all the minds and hands who work adroitly to materialize these tasks. I really appreciate everyone's contribution and suggestions in finalizing the contents.

Dr. Varsha H. Patil Coordinator, Board of Studies (Computer Engineering), SPPU, Pune

[This document contents Program Educational Objectives - Program Outcomes - Program Specific Outcomes(page 3),Courses (teaching scheme, examination, marks and credit)(page 4-5), Courses syllabi(page 7-85) and <u>FE to BE courses at a glance</u>(Page 86-87)].

Other related Syllabus Links: <u>Syllabus for First Year Engineering (2015 Course)</u> <u>Syllabus for Second Year Computer Engineering (2015 Course)</u> <u>Syllabus for Third Year Computer Engineering (2015 Course)</u>

Savitribai Phule Pune University, Pune Bachelor of Computer Engineering

Program Educational Objectives

- 1. To prepare globally competent graduates having strong fundamentals, domain knowledge, updated with modern technology to provide the effective solutions for engineering problems.
- 2. To prepare the graduates to work as a committed professional with strong professional ethics and values, sense of responsibilities, understanding of legal, safety, health, societal, cultural and environmental issues.
- 3. To prepare committed and motivated graduates with research attitude, lifelong learning, investigative approach, and multidisciplinary thinking.
- 4. To prepare the graduates with strong managerial and communication skills to work effectively as individual as well as in teams.

Program Outcomes

Students are expected to know and be able -

- 1. To apply knowledge of mathematics, science, engineering fundamentals, problem solving skills, algorithmic analysis and mathematical modeling to the solution of complex engineering problems.
- 2. To analyze the problem by finding its domain and applying domain specific skills
- 3. To understand the design issues of the product/software and develop effective solutions with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- 4. To find solutions of complex problems by conducting investigations applying suitable techniques.
- 5. To adapt the usage of modern tools and recent software.
- 6. To contribute towards the society by understanding the impact of Engineering on global aspect.
- 7. To understand environment issues and design a sustainable system.
- 8. To understand and follow professional ethics.
- 9. To function effectively as an individual and as member or leader in diverse teams and interdisciplinary settings.
- 10. To demonstrate effective communication at various levels.
- 11. To apply the knowledge of Computer Engineering for development of projects, and its finance and management.
- 12. To keep in touch with current technologies and inculcate the practice of lifelong learning.

Program Specific Outcomes (PSO)

A graduate of the Computer Engineering Program will demonstrate-

PSO1: Professional Skills-The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying.

PSO2: Problem-Solving Skills- The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.

PSO3: Successful Career and Entrepreneurship- The ability to employ modern computer languages, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.

	Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) (with effect from 2018-19)										
	<u>Semester I</u>										
Course Code	Course	Teaching SchemeHours / Week			Examination Scheme and Marks				Cre	dit	
		Theory	Practical	In- Sem	End- Sem	TW	PR	OR/ *PRE	Total	TH/ TUT	PR
410241	High Performance Computing	04		30	70				100	04	
410242	Artificial Intelligence and Robotics	03		30	70				100	03	
410243	Data Analytics	03		30	70				100	03	
410244	Elective I	03		30	70				100	03	
410245	Elective II	03		30	70				100	03	
410246	Laboratory Practice I		04			50	50		100		02
410247	Laboratory Practice II		04			50		*50	100		02
410248	Project Work Stage I		02					*50	50		02
	1	1	1	•	1	-		Tota	Credit	16	06
	Total	16	10	150	350	100	50	100	750	22	2
410249	Audit Course 5									Gra	de
Elective I							Ele	ective II			
410244 (A) Digital Signal Processing					245 (A)	Distrib	uted S	Systems			
410244 (B) Software Architecture and Design				4102	410245 (B) Software Testing and Quality Assurance					ance	
410244 (410244 (C) Pervasive and Ubiquitous Computing				410245 (C) Operations Research						
410244 (D) Data Mining and	Warehou	sing	4102	410245 (D) Mobile Communication						

410249-Audit Course 5 (AC5) Options:

AC5-I	Entreprene	eurship Development	AC5-IV:	Industrial Safety and Environment Consciousness
AC5-II:	Botnet of	<u>Things</u>	AC5-V:	Emotional Intelligence
AC5-III:	<u>3D Printin</u>	g	AC5-VI:	MOOC- Learn New Skills
Abbrevia	<u>ations</u> :			
TW: Terr	n Work	TH: Theory	OR: Oral	PR: Practical
Sem: Sei	mester	PRE: Project/ Mini	-Project Presen	tation

•

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) (with effect from 2018-19)

Semester II											
Course Code	Course	Teaching Ex Scheme Hours / Week			amination Scheme and Marks				Cre	dit	
		Theory	Practical	In- Sem	End- Sem	TW	PR	OR/ *PRE	Total	TH/ TUT	PR
410250	Machine Learning	03		30	70				100	03	
410251	Information and Cyber Security	03		30	70				100	03	
410252	Elective III	03		30	70				100	03	
410253	Elective IV	03		30	70				100	03	
410254	Laboratory Practice III		04			50	50		100		02
410255	Laboratory Practice IV		04			50		*50	100		02
410256	Project Work Stage II		06			100		*50	150		06
								Total	Credit	12	10
	Total	12	14	120	280	200	50	100	750	22	
4102 57	Audit Course 6	I			1			1	1	Gra	de
	Elective	III			Elective IV						
410252	(A) Advanced Digital Si	ignal Proc	cessing		410253 (A) Software Defined Networks						
410252 (B) <u>Compilers</u>				410253	8 (B) <u>H</u>	uman	Compu	iter Inter	face		
410252	(C) Embedded and Real	Time Op	erating Sy	stem	410253 (C) <u>Cloud Computing</u>						
410252	(D) <u>Soft Computing and</u>	l Optimiz	ation Algo	<u>rithms</u>	410253 (D) <u>Open Elective</u>						

410259-Audit Course 6 (AC6) Options:

AC6-I: Bus	siness Intelligence	AC6-IV:	Usability Engineering
AC6-II: Gar	<u>nification</u>	AC6-V:	Conversational Interfaces
AC6-III: Qua	antum Computing	AC6-VI:	MOOC- Learn New Skills
Abbreviatio			
TW: Term W	ork TH: Theory	OR: Oral	PR: Practical
Sem: Semest	er PRE : Project/ Mi	ni-Project Preser	itation

SEMESTER I

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) 410241: High Performance Computing

410241. Ingn i er formance Computing								
Teaching Scheme: TH: 04 Hours/Week	Credit 04	Examina In-Sem (Pape End-Sem (Pape						
Prerequisite Courses: 210	0253-Microprocessor, 210244	- Computer Orgar	nization and					
Architecture, 210254-Principles of Programming Languages, 310251- Systems Programming and								
Operating System	Operating System							
Companion Course: 410246-I	Laboratory Practice I							
Course Objectives:								
• To study parallel comp	uting hardware and programmin	ng models						
• To be conversant with	performance analysis and mode	ling of parallel program	ns					
• To understand the optic	ons available to parallelize the p	rograms						
• To know the operating	system requirements to qualify	in handling the paralle	lization					
Course Outcomes:								
On completion of the course, st	udent will be able to-							
• Describe different para	llel architectures, inter-connect	networks, programmin	g models					
• Develop an efficient pa	rallel algorithm to solve given p	oroblem						
• Analyze and measure p	performance of modern parallel	computing systems						
• Build the logic to paral	lelize the programming task							
	Course Contents							
Unit I	Introduction		09 Hours					
Motivating Parallelisn	n, Scope of	Parallel	Computing,					
Parallel Programming Platfe	orms: Implicit Parallelism,	Trends in Micropr	ocessor and					
Architectures, Limitations of Memory, System Performance, Dichotomy of Parallel Computing								
Platforms, Physical Organization of Parallel Platforms, Communication Costs in Parallel								
Machines, Scalable design principles, Architectures: N-wide superscalar architectures, Multi-core								
architecture.	architecture.							

Unit II

Parallel Programming

09 Hours

Principles of Parallel Algorithm Design: Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for Containing Interaction Overheads, Parallel Algorithm Models, The Age of Parallel Processing, the Rise of GPU Computing, A Brief History of GPUs, Early GPU.

Faculty of Engineering Savitribai Phule Pune University **Basic Communication Unit III 09 Hours** Operations- One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix-Sum Operations, Scatter and Gather, All-to-All Personalized Communication. Circular Shift, Improving Speed Some the of Communication Operations. **Analytical Models of Parallel Programs 09 Hours Unit IV** Analytical Models: Sources of overhead in Parallel Programs, Performance Metrics for Parallel Systems, and The effect of Granularity on Performance, Scalability of Parallel Systems, Minimum execution time and minimum cost, optimal execution time. Dense Matrix Algorithms: Matrix-Vector Multiplication, Matrix-Matrix Multiplication. Unit V **Parallel Algorithms- Sorting and Graph 09 Hours** Issues in Sorting on Parallel Computers, Bubble Sort and its Variants, Parallelizing Quick sort, All-Pairs Shortest Paths, Algorithm for sparse graph, Parallel Depth-First Search, Parallel Best-First Search. **Unit VI CUDA Architecture 09 Hours** CUDA Applications CUDA Architecture, Using the Architecture, of CUDA Introduction to CUDA C-Write and launch CUDA C kernels, Manage GPU memory, Manage communication and synchronization, Parallel programming in CUDA- C. **Books: Text:** Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, "Introduction to 1. Parallel Computing", 2nd edition, Addison-Wesley, 2003, ISBN: 0-201-64865-2 Jason sanders, Edward Kandrot, "CUDA by Example", Addison-Wesley, ISBN-13: 978-0-2. 13-138768-3 **References:** 1. Kai Hwang, "Scalable Parallel Computing", McGraw Hill 1998, ISBN:0070317984 Shane Cook, "CUDA Programming: A Developer's Guide to Parallel Computing with 2. GPUs", Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 2013 ISBN: 9780124159884 David Culler Jaswinder Pal Singh, "Parallel Computer Architecture: A Hardware/Software 3.

- Approach", Morgan Kaufmann,1999, ISBN 978-1-55860-343-1
- 4. Rod Stephens, "Essential Algorithms", Wiley, ISBN: ISBN: 978-1-118-61210-1

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) 410242: Artificial Intelligence and Robotics

410242: Artificial Intelligence and Robotics							
Teaching S	cheme:	Credit		tion Scheme:			
TH: 03 Ho	urs/Week	03	In-Sem (Pape End Som (Pape				
		Principles of Programming Lan	End-Sem (Pape	r): /U wiarks			
	Course: 410246-La		.5				
Course Ob							
	-	ept of Artificial Intelligence (AI)					
		r search strategies for AI					
	-	-					
	•	idamentals of mobile robotics	· 11 · (1 · ·	1.			
	-	lve real world problems unconv	entionally with optima				
Course Ou		1 . 111 11 .					
-	-	udent will be able to-					
		ole Intelligent agents for various					
		ing different informed search / u	ninformed search or h	euristic			
appr	oaches.						
• Iden	tify knowledge asso	ociated and represent it by ontolo	ogical engineering to p	olan a strategy			
to so	olve given problem.						
• App	ly the suitable algor	ithms to solve AI problems					
		Course Contents					
Unit I		Introduction		08 Hours			
Artificial Ir	ntelligence: Introdu	ction, Typical Applications. St	ate Space Search: De	epth Bounded			
DFS, Depth	n First Iterative Dee	epening. Heuristic Search: Heu	ristic Functions, Best	First Search,			
Hill Climbi	ng, Variable Neighl	borhood Descent, Beam Search	, Tabu Search. Optim	al Search: A*			
algorithm, I	terative Deepening	A [*] , Recursive Best First Search	n, Pruning the CLOSE	ED and OPEN			
Lists.							
Unit II	Prob	lem Decomposition and Pla	nning	08 Hours			
Problem De	composition: Goal	Trees, Rule Based Systems, Ru	le Based Expert Syste	ms. Planning:			
STRIPS, Fo	orward and Backwar	rd State Space Planning, Goal St	tack Planning, Plan Sp	bace Planning,			
A Unified I	Framework For Plan	nning. Constraint Satisfaction :	N-Queens, Constrain	t Propagation,			

Scene Labeling, Higher order and Directional Consistencies, Backtracking and Look ahead Strategies.

ulty of Engineerin

Faculty 0	Faculty of Engineering Savitibal Finder une Oniversity						
Unit III	Logic and Reasoning	08 Hours					
Knowledge Based Reasoning: Agents, Facets of Knowledge. Logic and Inferences: Formal Logic,							
Propositional and First Order Logic, Resolution in Propositional and First Order Logic, Deductive							
Retrieval,	Backward Chaining, Second order Logic. Knowledge Representation	: Conceptual					
Dependenc	y, Frames, Semantic nets.						
Unit IV	Natural Language Processing and ANN	08 Hours					
Natural La	nguage Processing: Introduction, Stages in natural language Processing, A	Application of					
NLP in Ma	chine Translation, Information Retrieval and Big Data Information Retrie	val. Learning:					
Supervised	, Unsupervised and Reinforcement learning. Artificial Neural Netwo	orks (ANNs):					
Concept, F	eed forward and Feedback ANNs, Error Back Propagation, Boltzmann Ma	chine.					
Unit V	Robotics	08 Hours					
Robotics:	Fundamentals, path Planning for Point Robot, Sensing and mapping for	Point Robot,					
Mobile Ro	bot Hardware, Non Visual Sensors like: Contact Sensors, Inertial Sen	sors, Infrared					
Sensors, Se	onar, Radar, laser Rangefinders, Biological Sensing. Robot System Contr	ol: Horizontal					
and Vertic	al Decomposition, Hybrid Control Architectures, Middleware, High-L	evel Control,					
Human-Ro	bot Interface.						
Unit VI	Robots in Practice	08 Hours					
Robot Pos	e Maintenance and Localization: Simple Landmark Measurement, S	ervo Control,					
Recursive Filtering, Global Localization. Mapping: Sensorial Maps, Topological Maps, Geometric							
Maps, Exploration. Robots in Practice: Delivery Robots, Intelligent Vehicles, Mining Automation,							
Space Rob	otics, Autonomous Aircrafts, Agriculture, Forestry, Domestic Robots.						
Books:							
Text:							

- 1. Deepak Khemani, "A First Course in Artificial Intelligence", McGraw Hill Education(India), 2013, ISBN: 978-1-25-902998-1
- 2. Elaine Rich, Kevin Knight and Nair, "Artificial Intelligence", TMH, ISBN-978-0-07-008770-5
- 3. Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Third edition, Pearson, 2003, ISBN :10: 0136042597
- 4. Michael Jenkin, Gregory, " Computational Principals of Mobile Robotics", Cambridge University Press, 2010, ISBN : 978-0-52-187157-0

References:

- 1. Nilsson Nils J, "Artificial Intelligence: A new Synthesis, Morgan Kaufmann Publishers Inc. San Francisco, CA, ISBN: 978-1-55-860467-4
- 2. Patrick Henry Winston, "Artificial Intelligence", Addison-Wesley Publishing Company, ISBN: 0-201-53377-4
- 3. Andries P. Engelbrecht-Computational Intelligence: An Introduction, 2nd Edition-Wiley India- ISBN: 978-0-470-51250-0

Faculty of Engineering	witribai Phule Pune Univ		Pune University					
	of Computer Engineerin	•						
i ourtin i cui	410243: Data Analytics							
Teaching Scheme: Credit Examination Scheme:								
In-Sem (Paper): 30 Marks								
TH: 03 Hours/Week03End-Sem (Paper): 70 Marks								
Prerequisite Courses: 310242	Database Management Systems	3						
Companion Course: 410246-	Laboratory Practice I							
Course Objectives:								
• To develop problem sol	ving abilities using Mathematics	3						
• To apply algorithmic str	ategies while solving problems							
• To develop time and spa	ce efficient algorithms							
• To study algorithmic ex	amples in distributed, concurren	t and parallel environ	ments					
Course Outcomes:								
On completion of the course, st	udent will be able to-							
• Write case studies in Bu	siness Analytic and Intelligence	using mathematical n	nodels					
• Present a survey on appl	ications for Business Analytic a	nd Intelligence						
• Provide problem solutio	ns for multi-core or distributed,	concurrent/Parallel en	vironments					
	Course Contents							
Unit I	Introduction and Life Cycl	e	08 Hours					
Introduction: Big data overview	w, state of the practice in Analy	rtics- BI Vs Data Scie	ence, Current					
Analytical Architecture, drivers	s of Big Data, Emerging Big Da	ta Ecosystem and new	approach.					
Data Analytic Life Cycle: Ove	erview, phase 1- Discovery, Ph	ase 2- Data preparati	on, Phase 3-					
Model Planning, Phase 4- 1	Model Building, Phase 5- C	ommunicate Result	s, Phase 6-					
Opearationalize. Case Study: G	INA							
Unit II	Basic Data Analytic Method	S	08 Hours					
Statistical Methods for Evaluat	ion- Hypothesis testing, differe	nce of means, wilcox	on rank–sum					
test, type 1 type 2 errors, pow	er and sample size, ANNOVA.	Advanced Analytical	Theory and					
Methods: Clustering- Overvie	w, K means- Use cases, Ov	verview of methods,	determining					
number of clusters, diagnostics	, reasons to choose and cautions							

Unit III

Unit IV

Association Rules and Regression

08 Hours

Advanced Analytical Theory and Methods: Association Rules- Overview, a-priori algorithm, evaluation of candidate rules, case study-transactions in grocery store, validation and testing, diagnostics. Regression- linear, logistics, reasons to choose and cautions, additional regression models.

Decision trees- Overview, general algorithm, decision tree algorithm, evaluating a decision tree. Naïve Bayes – Bayes' Algorithm, Naïve Bayes' Classifier, smoothing, diagnostics. Diagnostics of classifiers, additional classification methods.

Classification

Unit V	Big Data Visualization	08 Hours
	\bullet	

Introduction to Data visualization, Challenges to Big data visualization, Conventional data visualization tools, Techniques for visual data representations, Types of data visualization, Visualizing Big Data, Tools used in data visualization, Analytical techniques used in Big data visualization.

Unit VIAdvanced Analytics-Technology and Tools08 HoursAnalytics for unstructured data- Use cases, Map Reduce, Apache Hadoop. The HadoopEcosystem- Pig, HIVE, HBase, Mahout, NoSQL. An Analytics Project-Communicating,

operationalizing, creating final deliverables.

Books:

Text:

- 1. David Dietrich, Barry Hiller, "Data Science and Big Data Analytics", EMC education services, Wiley publications, 2012, ISBN0-07-120413-X
- Ashutosh Nandeshwar, "Tableau Data Visualization Codebook", Packt Publishing, ISBN 978-1-84968-978-6

References:

- 1. Maheshwari Anil, Rakshit, Acharya, "Data Analytics", McGraw Hill, ISBN: 789353160258.
- Mark Gardner, "Beginning R: The Statistical Programming Language", Wrox Publication, ISBN: 978-1-118-16430-3
- 3. Luís Torgo, "Data Mining with R, Learning with Case Studies", CRC Press, Talay and Francis Group, ISBN9781482234893
- Carlo Vercellis, "Business Intelligence Data Mining and Optimization for Decision Making", Wiley Publications, ISBN: 9780470753866.

Faculty of EngineeringSavitribai Phule Pune University									
Savitribai Phule Pune University									
Fourth Year of Computer Engineering (2015 Course)									
Elective I 410244(A): Digital Signal Processing									
Teaching Scheme:	Credit		ation Scheme:						
TH: 03 Hours/Week 03 In-Sem (Paper): 50 Marks									
Interview Interview Interview End-Sem (Paper): 70 Marks Prerequisite Courses: 207003- Engineering Mathematics III Interview Interview									
Companion Course: 410247-Laboratory Practice II									
Course Objectives:	•								
· · · · · · · · · · · · · · · · · · ·	d representation and properties of	of signals and systems							
• To learn methodology to	o analyze signals and systems								
• To study transformed do	omain representation of signals a	and systems							
	analysis of Discrete Time (DT) s	signals and systems							
• To Understand Design of	-								
	the DSP Processors and DSP ap	plications							
Course Outcomes: On completion of the course, st	udent will be able to								
-	atical models and representation	s of DT Signals and S	Systems						
	ms like Fourier and Z-Transform	-	•						
	nd implementation of DT syster								
and different transforms	5.								
	edge of signals and systems for o		•						
• Apply knowledge and u	se the signal transforms for digi	tal processing applicat	tions						
	Course Contents		00 H						
Unit I	Signals and Systems		08 Hours						
Continuous time (CT), Discret	e-time (DT) and Digital signal	s, Basic DT signals a	and Operations.						
Discrete-time Systems, Propert	ties of DT Systems and Classif	ication, Linear Time	Invariant (LTI)						
Systems, Impulse response, Li	inear convolution, Linear const	ant coefficient different	ence equations,						
FIR and IIR systems, Period	ic Sampling, Relationship bet	ween Analog and D	T frequencies,						
Aliasing, Sampling Theorem, A	to D conversion Process: Samp	oling, quantization and	Aliasing, Sampling Theorem, A to D conversion Process: Sampling, quantization and encoding.						
Unit II Frequen									
Introduction to Fourier Series, Representation of DT signal by Fourier Transform (FT), Properties									
Introduction to Fourier Series,	•	0	08 Hours						
	•	y Fourier Transform (08 Hours FT), Properties						
of FT: Linearity, periodicity,	Representation of DT signal by	y Fourier Transform (fting, time reversal,	08 Hours FT), Properties differentiation,						
of FT: Linearity, periodicity, convolution theorem, windowing	Representation of DT signal by time shifting, frequency shi	y Fourier Transform (fting, time reversal, ansform (DFT), DFT	08 Hours FT), Properties differentiation, and FT, IDFT,						
of FT: Linearity, periodicity, convolution theorem, windowin Twiddle factor, DFT as linear	Representation of DT signal by time shifting, frequency shi ng theorem Discrete Fourier Tr	y Fourier Transform (fting, time reversal, ansform (DFT), DFT es of DFT, circular sh	08 Hours FT), Properties differentiation, and FT, IDFT,						

•

Effective computation of DFT, Radix-2 FFT algorithms: DIT FFT, DIF FFT, Inverse DFT using FFT, Z-transform (ZT), ZT and FT, ZT and DFT, ROC and its properties, ZT Properties, convolution, initial value theorem, Rational ZT, Pole Zero Plot, Behavior of causal DT signals, Inverse Z Transform (IZT): power series method, partial fraction expansion (PFE), Residue method.

Unit IV

Unit V

Analysis of DT - LTI Systems

System function H(z), H(z) in terms of Nth order general difference equation, all poll and all zero systems, Analysis of LTI system using H(Z), Unilateral Z-transform: solution of difference equation, Impulse and Step response from difference equation, Pole zero plot of H(Z) and difference equation, Frequency response of system, Frequency response from pole-zero plot using simple geometric construction.

Digital Filter Design Concept of filtering, Ideal filters and approximations, specifications, FIR and IIR filters, Linear phase response, FIR filter Design: Fourier Series method, Windowing method, Gibbs Phenomenon, desirable features of windows, Different window sequences and its analysis, Design examples IIR filter design: Introduction, Mapping of S-plane to Z-plane, Impulse Invariance method, Bilinear Z transformation (BLT) method, Frequency Warping, Pre-warping, Design examples, Comparison of IIR and FIR Filters.

Unit VI		Filter St	ructures and	DSP Processo	ors		08 Hou	rs
Eilton Star	atura for	EID Systems	, dimant forme	aggaada farma	atmiatringa	for line	m mhaga	EID

Filter Structures for FIR Systems: direct form, cascade form, structures for linear phase FIR Systems, Examples, Filter structures for IIR Systems: direct form, cascade form, parallel form, Examples DSP Processors: ADSP 21XX Features, comparison with conventional processor, Basic Functional Block diagram, SHARC DSP Processor Introduction to OMAP (Open Multimedia Application Platform).

Books:

Text:

- 1. Proakis J, Manolakis D, "Digital Signal Processing", 4th Edition, Pearson Education, ISBN 9788131710005
- 2. Oppenheium A, Schafer R, Buck J, "Discrete time Signal Processing", 2nd Edition, Pearson Education, ISBN 9788131704929

Reference:

- 1. Mitra S., "Digital Signal Processing: A Computer Based Approach", Tata McGraw-Hill, 1998, ISBN 0-07-044705-5
- 2. Ifleachor E. C., Jervis B. W., "Digital Signal Processing: A Practical Approach", Pearson-Education, 2002, ISBN-13: 978-0201596199, ISBN-10: 0201596199
- 3. S. Salivahanan, A. Vallavaraj, C. Gnanapriya, "Digital Signal Processing", McGraw-Hill, ISBN 0-07-463996-X
- 4. S. Poornachandra, B. Sasikala, "Digital Signal Processing", 3rd Edition, McGraw-Hill, ISBN-13:978-07-067279-6

08 Hours

08 Hours

Savitribai Phule Pune University

Fourth Year of Computer Engineering (2015 Course)

Elective I

410244(B): Software Architecture and Design

Teaching Scheme: TH: 03 Hours/Week	Credit 03	Examination Scheme: In-Sem (Paper): 30 Marks End-Sem (Paper): 70 Marks						
Prerequisite Courses: 310243- Software Engineering and Project Management								
Companion Course: 410247-L	aboratory Practice II							
Course Objectives:								
• To introduce basic conc	epts and principles about softwar	e design and software architecture						
• To learn practical appro	aches and methods for creating a	nd analyzing software architecture						
• To acquaint with the interaction between quality attributes and software architecture								
• To experience with ex	amples in design pattern applie	cation and case studies in software						
architecture								

Course Outcomes:

On completion of the course, student will be able to-

- Express the analysis and design of an application
- Specify functional semantics of an application
- Evaluate software architectures
- Select and use appropriate architectural styles and software design patterns

	Course Contents	
Unit I	Introduction	08 Hours
Introduction	to Software Architecture, Architecture Business Cycle- Where do architectu	are come from,

Software processes and the Architecture Business cycle, What makes Good Architecture. What is software architecture- What Software Architecture is and what it is not, Other points of View, Architectural Patterns, Reference Models, Reference Architectures, Why is Software Architecture important, Architectural structure and Views. Case Study-A-7E Avionics System.

Unit II

Quality Attributes

08 Hours

Introduction to Quality Attributes, Understanding quality attributes- Functionality and Architecture, architecture and quality attributes, System Quality Attributes, Quality Attribute Scenario in Practice, Other System Quality Attributes, Business Qualities, and Architecture Qualities. Achieving quality attributes- Introducing Tactics, Availability tactics, Modifiability tactics, Performance tactics, Security tactics, Testability tactics, Usability tactics, Relationship of tactics to Architectural patterns, Architectural Patterns and Styles. Case study- Air Traffic Control.

Savitribai Phule Pune University

Unit III Designing the Architectures and Introduction to Design Patterns 08 Hours Architecture in Life Cycle, Designing the Architecture, Forming the team structure, Creating a skeletal system, Case Study- Flight Simulation. Design Patterns: What is Design Pattern?, Describing Design Patterns, The Catalog of Design Patterns, Organizing the Catalog, How Design patterns solves design problems, How to select Design Patterns, How to use Design Patterns. Unit IV **Design Pattern Catalog 08 Hours** Creational Patterns- Abstract Factory, Singleton. Structural Patterns- Adaptor, Facade, Proxy. Behavioral Patterns- Chain of Responsibility, Iterator, Mediator, Observer. What to expect from Design Patterns. Unit V **Client Side Technologies 08 Hours** Introduction to three tier and n-Tier Web Architectures, Need of Client side technology in multi-tier architectures, XML, Client side technologies- HTML, DHTML, Java Applets, Active X controls, DOM, AJAX. Case study-Mobile or portable client side technologies.

Unit VIMiddleware and Server Side Technologies08 HoursIntroductiontoMiddleware, Types of Middleware, Application servers, IntroductiontoJava EE,IntroductiontoJava EE technologies like JMS, JDBC, RPC, RMI, SOCKET. EJB 3.0Architecture,Entity, Session, Message beans, XML, XSLT.Specifications and characteristics of MiddlewareMiddlewaretechnologies.Server Side Technologies- Need of server side technology in multi-tier architectures, JavaWeb Services, Server side technologies: JSP, JSF, SOA, MVC. Java Servlets, struts.

Books:

Text:

- Len Bass, Paul Clements, Rick Kazman, "Software Architecture in Practice", Second Edition, Pearson, ISBN 978-81-775-8996-2
- 2. Erich Gamma, "Design Patterns", Pearson, ISBN 0-201-63361-2.
- **3.** Kogent, "Java Server Programming Black Book", Dream Tech Press, PHI Publications, ISBN: 978-81-7722-835-9.

References:

- James L. Weaver, Kevin Mukhar, "Beginning J2EE 1 .4: From Novice to Professional", ISBN-10: 1590593413, ISBN-13: 978-1590593417
- 2. Richard N.Taylor, Nenad M., "Software Architecture Foundation Theory and practice", Wiley ISBN: 978-81-265-2802-8.
- 3. Java6 Programming, Black Book DreamTech Press, ISBN:978-81-7722-736-9

Sa	avitribai Phule Pune Univ	ersity	-
Fourth Year	r of Computer Engineerin	g (2015 Course)	
	Elective I		
410244(C)	: Pervasive and Ubiquito	us Computing	
Teaching Scheme:	Credit	Examina	ation Scheme:
		In-Sem (Pape	er): 30 Marks
TH: 03 Hours/Week	03	End-Sem (Pape	er): 70 Marks
Prerequisite Courses: 310245-	Computer Networks		
Companion Course: 410247-L	aboratory Practice II		
Course Objectives:			
• To understand the chara	cteristics and principles of Perv	asive computing	
• To introduce to the enab	oling technologies of pervasive of	computing	
• To understand the basic	issues and performance require	ments of pervasive cor	mputing
applications			
• To learn the trends of p	ervasive computing		
Course Outcomes:	1 / 111 11		
On completion of the course, stu			
	primitive pervasive applications		
-	e impact of pervasive computing	g on future computing	, applications
and society			
	opose solutions for problems rel	-	
	ystem to meet desired needs w	ithin the constraints of	of a particular
problem space	Course Contents		
IIn:4 I			00 Hound
Unit I	Pervasive Computing	1 1 1 1 1	08 Hours
Pervasive Computing, Applic			
technology trends, Connectin			
Characteristics, interaction t Architecture for pervasive comp	1 1	automated experie	ence capture.
Unit II	Open Protocols		08 Hours
Open protocols, Service dis		lini, SLP, UppP pi	
Synchronization, SyncML fram			
networks, addressing and comm			•
based Applications - XML and	d its role in Pervasive Comput	ing, Wireless Applic	ation Protocol
(WAP) Architecture and Securi	ty, Wireless Mark-Up language	(WML) – Introductio	on. Moving on
from Weiser's Vision of Calm C	Computing: Engaging UbiComp	Experiences.	
Unit III Voic	e Enabled Pervasive Comp	uting	08 Hours

•

Savitribai Phule Pune University

Voice Enabled Pervasive Computing, Voice Standards, Speech Applications in Pervasive Computing and security. Device Connectivity, Web application Concepts, WAP and Beyond. Voice Technology – Basis of speech Recognition, Voice Standards, Speech Applications, Speech and Pervasive Computing, Security, The Hitchhiker's Guide to UbiComp: Using techniques from Literary and Critical Theory to Reframe Scientific Agendas.

Unit IV Personal Digital Assistant 08 Hours Personal Digital Assistant - History, Device Categories, Device Characteristics, Software Components, Standards. Server side programming in Java, Pervasive Web application Architecture, Example Application, Access via PCs, Access via WAP, Access via PDA, and Access via Voice, Pinch Watch: A Wearable Device for One-Handed Micro interactions., Interfaces - Enabling mobile micro-interactions with physiological computing. Unit V **User Interface 08 Hours** User Interface Issues in Pervasive Computing, Architecture, and Smart Card based Authentication Mechanisms, Wearable computing Architecture. Touche: Enhancing Touch Interaction on Humans, Screens, Liquids, and Everyday Objects Unit VI **Context Awareness and Application Development 08 Hours** Location as context, Location Tracking, Co-ordinate models, Location Data Sources, sorting and search in location data. Sensing Activity based on various wearable sensors, smart phone sensors. Wearable Computing applications in Healthcare and Assistive Technologies. Developing, Deploying and Evaluating Pervasive computing applications. Application in Augmented Reality. **Books: Text:** 1. Jochen Burkhardt, Horst Henn, Stefan Hepper, Thomas Schaec and Klaus Rindtorff, "Pervasive Computing Technology and Architecture of Mobile Internet Applications", Addision Wesley, 2002. ISBN:13: 978-0-201-72215-4 2. Uwe Hansman, Lothat Merk, Martin S Nicklous and Thomas Stober: "Principles of Mobile Computing", Second Edition, Springer- Verlag, New Delhi, 2003, ISBN: 9783662043189 **References:** 1. Mohammads, Obaidait, Denko, Woungang, "Pervasive Computing and Networking", Wiley, ISBN:978-0-470-74772-8 2. Seng Loke, "Context-Aware Computing Pervasive Systems", Auerbach Pub., New York, 2007, ISBN: 978-1-4471-5006-0 3. Uwe Hansmann etl, "Pervasive Computing", Springer, New York, 2001., ISBN: 10: 3540002189

- **4.** John Krumm, "Ubiquitous Computing Fundamentals", Shroff Publishers, ISBN: 9781420093605
- 5. Adelstein, "Fundamental of Mobile and Pervasive Computing", McGrawHill, ISBN: 0-07-141237-9

Faculty of Engineering		Savitribai ri	ule Pune University
Sa	avitribai Phule Pune	University	-
Fourth Year	of Computer Engir	eering (2015 Course)
	Elective I		
410244	(D): Data Mining a		
Teaching Scheme:	Credit		ination Scheme:
TH: 03 Hours/Week	03		aper): 30 Marks (per): 70 Marks
Prerequisite Courses: 310242	2-Database Management		• /
and Engineering Economics			
Companion Course: 410247-I	Laboratory Practice II		
Course Objectives:			
• To understand the fundation	mentals of Data Mining		
• To identify the appropri	ateness and need of mini	ng the data	
• To learn the preprocessi	ng, mining and post proc	essing of the data	
• To understand various n	nethods, techniques and a	algorithms in data mining	
Course Outcomes:			
On completion of the course the	e student should be able t	0-	
• Apply basic, intermedia	te and advanced techniqu	ies to mine the data	
• Analyze the output gene	erated by the process of d	ata mining	
• Explore the hidden patter	erns in the data		
• Optimize the mining pro	ocess by choosing best da	ata mining technique	
	Course Conten	<mark>its</mark>	
Unit I	Introduction		08 Hours
Data Mining, Data Mining Ta	sk Primitives, Data: Dat	a, Information and Know	vledge; Attribute
Types: Nominal, Binary, Ordir	nal and Numeric attribute	es, Discrete versus Conti	nuous Attributes;
Introduction to Data Preproces	sing, Data Cleaning: Mis	ssing values, Noisy data;	Data integration:
Correlation analysis; transform	ation: Min-max normali	zation, z-score normaliza	tion and decimal
scaling; data reduction: Data C	Cube Aggregation, Attrib	oute Subset Selection, sar	npling; and Data
Discretization: Binning, Histog	ram Analysis		
Unit II	Data Warehous		08 Hours

Multidimensional Data Model: Data Cubes, Stars, Snowflakes, and Fact Constellations Schemas; OLAP Operations in the Multidimensional Data Model, Concept Hierarchies, Data Warehouse Architecture, The Process of Data Warehouse Design, A three-tier data warehousing architecture, Types of OLAP Servers: ROLAP versus MOLAP versus HOLAP.

Faculty of Eng	ineering Savitribai P	hule Pune University
Unit III	Measuring Data Similarity and Dissimilarity	08 Hours 🧹
Measuring Da	ta Similarity and Dissimilarity, Proximity Measures for Nomina	al Attributes and
Binary Attrib	utes, interval scaled; Dissimilarity of Numeric Data: Minsk	cowski Distance,
Euclidean dis	tance and Manhattan distance; Proximity Measures for Cate	egorical, Ordinal
Attributes, Rat	io scaled variables; Dissimilarity for Attributes of Mixed Types, Co	osine Similarity.
Unit IV	Association Rules Mining	08 Hours
Market basket	Analysis, Frequent item set, Closed item set, Association Rules, a-	priori Algorithm,
Generating As	ssociation Rules from Frequent Item sets, Improving the Effici	ency of a-priori,
Mining Freque	ent Item sets without Candidate Generation: FP Growth Algorithm	; Mining Various
Kinds of Asso	ciation Rules: Mining multilevel association rules, constraint base	d association rule
mining, Meta 1	rule-Guided Mining of Association Rules.	
Unit V	Classification	08 Hours
Introduction to	: Classification and Regression for Predictive Analysis, Decision	n Tree Induction,
Rule-Based C	lassification: using IF-THEN Rules for Classification, Rule In	duction Using a
Sequential Co	vering Algorithm. Bayesian Belief Networks, Training Bayesian	Belief Networks,
Classification	Using Frequent Patterns, Associative Classification, Lazy Le	arners-k-Nearest-
Neighbor Clas	sifiers, Case-Based Reasoning.	
Unit VI	Multiclass Classification	08 Hours
Multiclass Cla	assification, Semi-Supervised Classification, Reinforcement lear	ning, Systematic
Learning, Whe	olistic learning and multi-perspective learning. Metrics for Eva	luating Classifier
Performance:	Accuracy, Error Rate, precision, Recall, Sensitivity, Specificity	; Evaluating the
Accuracy of a	Classifier: Holdout Method, Random Sub sampling and Cross-Val	idation.
Books:		
Elsevie 2. Parag F Wiley-	awei Kamber, Micheline Pei and Jian, "Data Mining: Concepts a r Publishers, ISBN:9780123814791, 9780123814807. Kulkarni, "Reinforcement and Systemic Machine Learning for Dec IEEE Press, ISBN: 978-0-470-91999-6	•
Google	w A. Russell, "Mining the Social Web: Data Mining Facebook, T +, GitHub, and More" , Shroff Publishers, 2nd Edition, ISBN: 978 n Tsvetovat, Alexander Kouznetsov, "Social Network Analysis for	0596006068

2. Maksim Tsvetovat, Alexander Kouznetsov, "Social Network Analysis for Startups:Finding connections on the social web", Shroff Publishers , ISBN: 10: 1449306462

Faculty of Engineering		Savitribai Phule	e Pune University
Sa	avitribai Phule Pune Univ	ersity	
Fourth Year	r of Computer Engineerin	g (2015 Course)	
	Elective II		
4	10245(A): Distributed Sys	stems	
Teaching Scheme:	Credit		ation Scheme:
TH: 03 Hours/Week	03		er): 30 Marks
Propagnisita Courses: 210254	Web Technology 210254 Drin	End-Sem (Pape	
	-Web Technology, 210254-Prin	cipies of Programming	
Companion Course: 410247-La			
 Course Objectives: To understand the cond Procedure Calls 	cept of Distributed system ,rem	ote method invocatio	n and Remote
• To learn communicatio	n methodology in distributed sy	stems	
• To acquaint with the Di	•	• • •	
1	of shared memory and security a	spects in distributed s	ystem
Course Outcomes: On completion of the course, st	udent will be able to		
-	the concept of remote method in	vocation and Remote	Procedure
Calls	the concept of remote method h		Trocedure
•	hanism of peer to peer systems anding of the challenges faced b		•
	Course Contents		
Unit I	Introduction		08 Hours
Characteristics of Distributed S	ystems(DS): Introduction, Exan	nples of DS, Trends i	n DS, Sharing
Resources, Challenges in DS. S	ystem Models: Physical, Archit	ectural and Fundamen	tal Models
Remote Invocation : Request Re	eply protocols, RPC, RMI, Case	e Study- JAVA RMI.	
Unit II Inter-proce	ss Communication and Remot	e Invocation	08 Hours
Representing Distributed Alg	gorithms: Representation Gua	arded Actions, Nor	ı-determinism,
Atomic actions, Fairness, Cent	ral vs Distributed Scheduler. Ti	me in Distributed Sys	stems: Logical
clocks, Vector clocks, Physical	Clock Synchronization, Algorit	hms for Internal and I	External Clock
Synchronization. Mutual Exc	lusion: Solution to Message	passing systems,	Foken-Passing
-	ed memory models, Mutual ex		-
Group mutual exclusion.			
•			00 11
Unit III	Indirect Communication	1 * • •	08 Hours
algorithm, Distributed debuggi broadcasting, Termination Dete Coordination Algorithms: Lead	es of Consistent snapshot, Chang. Global state collection : Election algorithm, Wave algorithm der Elections, Algorithms like like, Election in anonymous	lementary algorithm f n, Distributed deadloc Bully, Maxima findin	for All-to- All k detection g on the ring,
	· · · ·	- j i i	2

Faculty of Engineering Savitribai Phule Pune University **Unit IV Distributed File Systems 08 Hours** Distributed consensus: Consensus in asynchronous systems, Consensus in synchronous systems, Paxo's algorithm, Failure detectors. Distributed Transactions: Classification of transactions, Implementing Transactions, Concurrency control and serializability, Atomic Commit protocols, Recovery from Failures. Unit V Time, Global state and coordination **08 Hours** Group Communication: Atomic multicast, IP Multicast, Application layer multicast, Ordered multicast, Reliable multicast, Open groups. Replicated Data Management : Architecture of replicated Data Management, Data-Centric Consistency models, Client centric consistency protocols, Implementation of Data-Centric Consistency models, Quorum based protocols, Replica Placement, Brewer's CAP algorithm. **Unit VI Distributed Transaction and Replication 08 Hours** Distributed Discrete-Event Simulation: Distributed simulation, Conservative Simulation. Optimistic simulation and Time warp. Security in DS: Security Mechanisms to thwart various attacks in DS. Social and Peer-to-Peer network: Metrics of Social networks, Modeling Social Networks, Centrality measure in Social network, Community detection, Koorde and De Brujin Graphs, Skip graph, Replication management, Bit-torrent and free riding, Censorship resistance and anonymity. **Books: Text:** 1. George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems, Concepts and Design", Fifth Edition, Addison Wesley, ISBN 0-13-214301-1. 2. Sukumar Ghosh, "Distribute Systems : An Algorithmic Approach", Chapman and Hall/ CRC Press, Second Edition, 2015, ISBN 10: 1584885645 ISBN 13: 9781584885641 3. Andrew S. Tanenbaum and Maarten van Steen, "Distributed Systems – Principles and Paradigms", PHI Publication, ISBN 0-13-239227-5 **References:** 1. Shvartsman, A.A., Weatherspoon, H.; Zhao, "Future Directions in Distributed Computing Research and Position Papers Series: Lecture Notes in Computer Science", Vol. 2584 Schiper, (Eds.) 2003, X, 219 p., ISBN: 978-3-540-00912-2 2. Sape Mullender, "Distributed Systems", (Editor), Addison-Wesley Publication, ISBN 10: 0201624273 - ISBN13: 9780201624274 3. Kenneth, P. Birman, "Reliable Distributed Systems: Technologies, Web Services, and Applications", Springer; 1 edition, ISBN-10: 0387215093; ISBN-13: 978-0387215099 **4.** Galli D.L., "Distributed Operating Systems: Concepts and Practice", Prentice-Hall 2000, ISBN0-13-079843-6

Savitribai Phule Pune University Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) **Elective II** 410245(B): Software Testing and Quality Assurance **Examination Scheme: Teaching Scheme:** Credit In-Sem (Paper): 30 Marks TH: 03 Hours/Week 03 End-Sem (Paper): 70 Marks Prerequisite Courses: 310243- Software Engineering and Project Management, 310263- Software Modeling and Design Companion Course: 410247-Laboratory Practice II **Course Objectives:** Introduce basic concepts of software testing • • Understand white box, block box, object oriented, web based and cloud testing • Know in details automation testing and tools used for automation testing Understand the importance of software quality and assurance software systems • development. **Course Outcomes:** On completion of the course, student will be able to-Describe fundamental concepts in software testing such as manual testing, automation • testing and software quality assurance. • Design and develop project test plan, design test cases, test data, and conduct test operations • Apply recent automation tool for various software testing for testing software Apply different approaches of quality management, assurance, and quality standard to • software system Apply and analyze effectiveness Software Quality Tools • **Course Contents** Unit I Introduction **08 Hours** Introduction, historical perspective, Definition, Core Components, Quality View, Financial Aspect, Customers suppliers and process, Total Quality Management(TQM), Quality practices of TQM, Quality Management through- Statistical process Control, Cultural Changes, Continual Improvement cycle, quality in different areas, Benchmarking and metrics, Problem Solving Techniques, Problem Solving Software Tools.

Software Quality- Introduction, Constraints of Software product Quality assessment, Customer is a King, Quality and Productivity Relationship, Requirements of Product, Organization Culture, Characteristics of Software, Software Development Process, Types of Product, Criticality Definitions, Problematic areas of SDLC, Software Quality Management, Why Software has defects, Processes related to Software Quality, Quality Management System's Structure, Pillars of Quality Management System, Important aspects of quality management.

Faculty of Engineering

Savitribai Phule Pune University

TT 1. TT		
Unit II	Test Planning and Management	08 Hours
Review of	Fundamentals of Software Testing, Testing during development life cycle	, Requiremen
Traceability	y matrix, essentials, Work bench, Important Features of Tes	ting Process
Misconcept	tions, Principles, salient and policy of Software testing, Test Strategy, Test	st Planning,
Testing Pro	ocess and number of defects found, Test teem efficiency, Mutation testir	ig, challenges
est team a	approach, Process problem faced, Cost aspect, establishing testing pol	icy, methods
structured	approach, categories of defect, Defect/ error/ mistake in software, De	veloping Tes
Strategy ar	nd Plan, Testing process, Attitude towards testing, approaches, challe	nges, Raising
managemei	nt awareness for testing, skills required by tester.	
Unit III	Software Test Automation	08 Hours
What is T	est Automation, Terms used in automation, Skills needed for automa	tion, What to
automate, s	scope of automation, Design and Architecture of automation, Generic re-	quirement fo
Test Tool,	Process Model for Automation, Selecting Test Tool, Automation for XF	/Agile model
Challenges	in Automation, Data-driven Testing. Automation Tools like JUnit, Jmeter	
Unit IV	Selenium Tool	08 Hours
Introducing	g Selenium, Brief History of The Selenium Project, Selenium's Tool Su	ite, Selenium
	· · · · · · · · · · · · · · · · · · ·	
IDE, Seleni	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations	5
IDE, Seleni Unit V		08 Hours
Unit V	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations	08 Hours
Unit V Software Q	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management	08 Hours tware Qualit
Unit V Software Q Assurance.	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Sof	08 Hours tware Quality ches to SQA
Unit V Software Q Assurance.	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Software Quality, Software Engineering, ISO Software Quality Assurance, Six Sigma for Software Engineering, ISO	08 Hours tware Quality ches to SQA
Unit V Software Q Assurance. Statistical S	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Software Quality, Software Engineering, ISO Software Quality Assurance, Six Sigma for Software Engineering, ISO	08 Hours tware Quality ches to SQA
Unit V Software Q Assurance. Statistical S Standards, Unit VI	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Sof Elements of SQA, SQA Tasks, Goals, and Metrics, Formal Approa Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan.	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Sof Elements of SQA, SQA Tasks, Goals, and Metrics, Formal Approa Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Tools	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours ics, Software
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenanc	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Software Quality, Software Quality, Software Quality, Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Tools lity Management, Product Quality Metrics, In process Quality Metric	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours rics, Software Charts, Scatte
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenanc diagrams,	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Software Quality, Software Quality, Software Quality, Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Metrics, In process Quality Metrics, In process Quality Metrics, Inshikawa's 7 basic tools, Checklists, Pareto diagrams, Histogram, Run Control chart, Cause Effect diagram. Defect Removal Effectiveness	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours rics, Software Charts, Scatte
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenanc	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Software Quality, Software Quality, Software Quality, Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Metrics, In process Quality Metrics, In process Quality Metrics, Inshikawa's 7 basic tools, Checklists, Pareto diagrams, Histogram, Run Control chart, Cause Effect diagram. Defect Removal Effectiveness	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours rics, Software Charts, Scatte
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenanc diagrams, Maturity Le	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Software Quality, Software Quality, Software Quality, Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Metrics, In process Quality Metrics, In process Quality Metrics, Inshikawa's 7 basic tools, Checklists, Pareto diagrams, Histogram, Run Control chart, Cause Effect diagram. Defect Removal Effectiveness	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours rics, Software Charts, Scatte
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenanc diagrams, Maturity Le Books: Text:	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Software Quality, Software Quality, Software Quality, Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Metrics, In process Quality Metrics, In process Quality Metrics, Inshikawa's 7 basic tools, Checklists, Pareto diagrams, Histogram, Run Control chart, Cause Effect diagram. Defect Removal Effectiveness	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours ics, Software Charts, Scatte and Proces
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenance diagrams, Maturity Le Books: Text: 1. M Q	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Sof Elements of SQA, SQA Tasks, Goals, and Metrics, Formal Approa Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Tools Network Quality Metrics, In process Quality Metrics, In process Quality Metrics, Run O Control chart, Cause Effect diagram. Defect Removal Effectiveness evel.	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours ics, Software Charts, Scatte and Proces
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenanc diagrams, Maturity Le Books: Text: 1. M Q ISB	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Software Quality, Software Quality, Software Quality, Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Metrics, In process Quality Metrics, In process Quality Metrics, In process Quality Metrics, In Software, Software, Software, Software, Seftect diagram, Befect Removal Effectiveness evel. G Limaye, "Software Testing Principles, Techniques and Tools", Tata	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours ics, Software Charts, Scatte and Proces
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenance diagrams, Maturity Le Books: Text: 1. M Q ISB 2. Srir	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Sof Elements of SQA, SQA Tasks, Goals, and Metrics, Formal Approa Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Tools lity Management, Product Quality Metrics, In process Quality Metrice, Ishikawa's 7 basic tools, Checklists, Pareto diagrams, Histogram, Run C Control chart, Cause Effect diagram. Defect Removal Effectiveness evel. G Limaye, "Software Testing Principles, Techniques and Tools", Tata N: 9780070139909 0070139903	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours ics, Software Charts, Scatte and Proces
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenance diagrams, Maturity Le Books: Text: 1. M Q ISB 2. Srir	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Sof Elements of SQA, SQA Tasks, Goals, and Metrics, Formal Approa Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Tools lity Management, Product Quality Metrics, In process Quality Metrics, In process Quality Metrics, Ishikawa's 7 basic tools, Checklists, Pareto diagrams, Histogram, Run O Control chart, Cause Effect diagram. Defect Removal Effectiveness evel. G Limaye, "Software Testing Principles, Techniques and Tools", Tata N: 9780070139909 0070139903 hivasan Desikan, Gopalswamy Ramesh, "Software Testing Principles a rson, ISBN-10: 817758121X	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours ics, Software Charts, Scatte and Proces
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenanc diagrams, Maturity Le Books: Text: 1. M Q ISB 2. Srir Pea References 1. Nar	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Soft Elements of SQA, SQA Tasks, Goals, and Metrics, Formal Approa Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Metrics, In process Quality Metrics, In process Quality Metrics, In process Quality Metrics, Ishikawa's 7 basic tools, Checklists, Pareto diagrams, Histogram, Run O Control chart, Cause Effect diagram. Defect Removal Effectiveness evel. G Limaye, "Software Testing Principles, Techniques and Tools", Tata N: 9780070139909 0070139903 nivasan Desikan, Gopalswamy Ramesh, "Software Testing Principles a rson, ISBN-10: 817758121X S: resh Chauhan, "Software Testing Principles and Practices ", OXFO	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours ics, Software Charts, Scatte and Proces McGraw Hill nd Practices"
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenance diagrams, Maturity La Books: Text: 1. M Q ISB 2. Srin Pea References 1. Nar 019	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Soft Elements of SQA, SQA Tasks, Goals, and Metrics, Formal Approa Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Tools lity Management, Product Quality Metrics, In process Quality Metrics, In process Quality Metrics, Ishikawa's 7 basic tools, Checklists, Pareto diagrams, Histogram, Run O Control chart, Cause Effect diagram. Defect Removal Effectiveness evel. G Limaye, "Software Testing Principles, Techniques and Tools", Tata N: 9780070139909 0070139903 hivasan Desikan, Gopalswamy Ramesh, "Software Testing Principles a rson, ISBN-10: 817758121X s: resh Chauhan, "Software Testing Principles and Practices ", OXFO 8061846. ISBN-13: 9780198061847	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours ics, Softward Charts, Scatte and Proces McGraw Hill nd Practices"
Unit V Software Q Assurance. Statistical S Standards, Unit VI Total Qual maintenance diagrams, Maturity Le Books: Text: 1. M Q ISB 2. Srir Pea References 1. Nar 019 2. Step	ium RC, Selenium Webdriver, Selenium Grid, Test Design Considerations Quality Management Quality, Software Quality Dilemma, Achieving Software Quality, Soft Elements of SQA, SQA Tasks, Goals, and Metrics, Formal Approa Software Quality Assurance, Six Sigma for Software Engineering, ISO SQA Plan. Software Quality Metrics, In process Quality Metrics, In process Quality Metrics, In process Quality Metrics, Ishikawa's 7 basic tools, Checklists, Pareto diagrams, Histogram, Run O Control chart, Cause Effect diagram. Defect Removal Effectiveness evel. G Limaye, "Software Testing Principles, Techniques and Tools", Tata N: 9780070139909 0070139903 nivasan Desikan, Gopalswamy Ramesh, "Software Testing Principles a rson, ISBN-10: 817758121X S: resh Chauhan, "Software Testing Principles and Practices ", OXFO	08 Hours tware Quality ches to SQA 9000 Quality 08 Hours ics, Softward Charts, Scatte and Proces McGraw Hill nd Practices"

•

Faculty of Engineering		Savitribai Phule	e Pune University
	Savitribai Phule Pune Univ	•	2
Fourth Yea	ar of Computer Engineerin	g (2015 Course)	
	Elective II		
	410245(C): Operations Res		
Teaching Scheme:	Credit		ation Scheme: er): 30 Marks
TH: 03 Hours/Week	03	End-Sem (Pape	
Prerequisite Courses: 21024	41- Discrete Mathematics, 310243	3- Software Engineerin	ng and Project
Management			
Companion Course: 410247-	Laboratory Practice II		
Course Objectives:			
• To introduce the learn	ers the quantitative methods and	techniques for effecti	ive analysis of
decisions making			
• To understand the me	odel formulation and application	ns that is used in sol	ving business
decision problems.			
• To introduce the optim	nization approaches and fundament	ntal solution.	
• To learn a variety of	f ways in which deterministic an	nd stochastic models	in Operations
Research can be used			
Course Outcomes:			
On completion of the course,	student will be able to-		
• Identify the characteris	stics of different types of decision	-making environment	S
• Use appropriate decisi	on making approaches and tools		
Build various dynamic	and adaptive models		
• Develop critical thinki	ng and objective analysis of decis	sion problems	
• Apply the OR technique	ues for efficacy	-	
	Course Contents		
Unit I	Linear Programming		08 Hours
Introduction, Modeling with	n Liner Programming, Two va	ariable LP model, C	raphical LP
solutions for both maximizati	on and minimization models with	h various application of	examples, LP
model in equation form, sir	nplex method, special case in s	simplex method, artif	icial starting
solution, Degeneracy in LPP,	Unbounded and Infeasible solution	ons.	
Unit II Duality in Line	ar Programming and Revised	I Simplex Method	08 Hours
Duality theory: a fundamenta	l insight. The essence of duality	theory, Economic inte	erpretation of

duality, Primal dual relationship; Adapting to other primal forms, The revised simplex methoddevelopment of optimality and feasibility conditions, Revised Simplex Algorithms.

The Transportation Problem and Assignment Problem Unit III 08 Hours Finding an initial feasible solution - North West-corner method, Least cost method, Vogel's Approximation method, Finding the optimal solution, optimal solution by stepping stone and MODI methods, Special cases in Transportation problems - Unbalanced Transportation problem. Assignment Problem: Hungarian method of Assignment problem, Maximization in Assignment problem, unbalanced problem, problems with restrictions, travelling salesman problems. Unit IV **Game Theory and Dynamic Programming 08 Hours** Introduction, 2 person zero sum games, Minimax, Maximin principle, Principle of Dominance, Solution for mixed strategy problems, Graphical method for 2 x n and m x 2 games. Recursive nature of computations in Dynamic Programming, Forward and backward recursion, Dynamic Programming Applications – Knapsack, Equipment replacement, Investment models Unit V **Integer Programming Problem and Project Management 08 Hours** Integer Programming Algorithms – BandB Algorithms, cutting plane algorithm, Gomory's All-IPP Method, Project Management: Rules for drawing the network diagram, Application of CPM and PERT techniques in project planning and control; Crashing and resource leveling of operations Simulation and its uses in Queuing theory and Materials Management **08 Hours Unit VI Decision Theory and Sensitivity Analysis** Decision making under certainty, uncertainty and risk, sensitivity analysis, Goal programming formulation and algorithms – The weights method, The preemptive method **Books: Text:** 1. Hamdy A. Taha, "Operations Research", Pearson Education, 8th Edition, ISBN: 978-81-317-1104-0 2. Gillett, "Introduction to Operation Research", TMH, ISBN: 0070232458 **References:**

- 1. S.D. Sharma, Kedarnath, Ramnath and Co, "Operations Research", 2009, ISBN:978-81-224-2288-7
 - 2. Hrvey M. Wagner, "Principles of Operations Research", Second Edition, Prentice Hall of India Ltd., 1980, ISBN: 10: 0137095767, 13: 9780137095766..
 - **3.** V.K. Kapoor, "Operations Research", S. Chand Publishers, New Delhi, 2004, ISBN: 9788180548543, 8180548546.
 - 4. R. Paneer Selvam, "Operations Research", Second Edition, PHI Learning Pvt. Ltd., New Delhi, 2008, ISBN: 10: 8120329287,: 9788120329287.

raculty of	Engineering		Saviu ibal Pliule	r une University
	S	avitribai Phule Pune Univ	rersity	
	Fourth Yea	r of Computer Engineerin	ig (2015 Course)	
		Elective II		L
	410	0245(D): Mobile Commun		
Teaching Sc	heme:	Credit		nation Scheme:
TH: 03 Hou	ırs/Week	03		per): 30 Marks per): 70 Marks
Prerequisite	Courses: 310245-0	Computer Networks	Lind-Sein (1 ap	(1). / 0 1/1ai K5
- Companion	Course: 410247-La	aboratory Practice II		
Course Obj	ectives:			
• To ur	nderstand the Person	al Communication Services		
• To le	arn the design paran	neters for setting up mobile netw	work	
		ire and support services		
		gies being used on field		
Course Out		dent will be able to-		
1	-	ork performance parameters and	design decisions	
		echnique for setting up mobile r	e e	
		mobile network layout consid		irements which
confo	orms to the technolo	gy.		
• Use t	he 3G/4G technolog	y based network with bandwidt	h capacity planning.	
• Perce	pt to the requirement	nts of next generation mobile ne	twork and mobile app	lications.
		Course Contents		
Unit I		roduction to Cellular Netwo		08 Hours
-	-	5G, Personal Communication	-	
Mobile Stat	ion,, SIM, Base S	tation, Base Station Controlle	r, Mobile Switching	Center, MSC
Gateways, H	ILR and VLR, AuC	/EIR/OSS, Radio Spectrum, Fr	ee Space Path Loss, S	/N Ratio, Line
of sight trans	smission, Length of	Antenna, Fading in Mobile Env	vironment.	
Unit II		Cellular Network Design		08 Hours
Performance	e Criterion, Handof	f/Hanover, Frequency Reuse, C	Co-channel Interference	e and System
Capacity, Cl	nannel Planning, Ce	ll Splitting, Mobility Manageme	ent in GSM and CDM	A.
Unit III		Medium Access Control		08 Hours
Specialized	MAC, SDMA, FDN	IA, TDMA, CDMA, Frequency	Hopping Spread Spe	ctrum (FHSS),
Direct Sequ	ence Spread Spectr	um (DSSS), GMSK Modulatio	on, 8PSK, 64 QAM, 1	28 QAM and
OFDM				

•

F	aculty	of Engineering Savitribai Phule	Pune University
Unit	IV	GSM	08 Hours
GSM	– A	rchitecture, GSM Identifiers, Spectrum allocation, Physical and Logica	al Traffic and
Contr	ol ch	annels, GSM Bursts, GSM Frame, GSM Speech Encoding and decod	ing, Location
Upda	te, Ind	coming and Outgoing Call setup, GPRS.	
Uni	t V	Current 3G and 4G Technologies for GSM and CDMA	08 Hours
EDG	E, W-	CDMA: Wideband CDMA, CDMA2000, UMTS, HSPA (High Speed Pa	acket Access),
HSDI	PA, I	HSUPA, HSPA+, LTE (E-UTRA) 3GPP2 family CDMA2000 1x, 1x	RTT, EV-DO
(Evol	ution	-Data Optimized), Long Term Evolution (LTE) in 4G.	
Unit	: VI	Advances in Mobile Technologies	08 Hours
5GAA	A (Ai	utonomous Automation), Millimetre Wave, URLLC, LTEA (Advanced), LTE based
MUL	TIFIF	RE, Virtual Reality, Augmented Reality.	
Book	s:		
Text:			
		n Schiller, "Mobile Communications", Pearson Education, Second Editio 78-8131724262	n, 2004, ISBN:
2. J	Jason	Yi-Bing Lin, Yi-Bing Lin, Imrich Chlamtac, "Wireless and M	lobile network
		tecture", 2005, Wiley Publication, ISBN: 978812651560	
3. 1	Martii	n Sauter, "3G, 4G and Beyond: Bringing Networks, Devices and the V	Veb Together",
2	2012,	ISBN-13: 978-1118341483	
Refer	ences	:	
1.	Theo	odore S Rappaport, "Wireless Communications - Principles and Pract	tice", Pearson
	Educ	ation India, Second Edition, 2010, ISBN: 978-81-317-3186-4	
2.	Lee a	and Kappal, "Mobile Communication Engineering", Mc Graw Hill, ISBN:	
3.	Will	iam Stallings, "Wireless Communication and Networks", Prentice Hall, Sec	cond Edition,
	2014	, ISBN: 978-0131918351	

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) 410246:Laboratory Practice I

	√	
Teaching Scheme:	Credit	Examination Scheme:
Practical : 04 Hours/Week	02	Term Work: 50 Marks
		Practical: 50 Marks

Companion Courses: 410241, 410242 and 410243

Course Objectives and Outcomes: Practical hands on is the absolute necessity as far as employability of the learner is concerned. The presented course is solely intended to enhance the competency by undertaking the laboratory assignments of the core courses.

About

Laboratory Practice I is for practical hands on for core courses High Performance Computing, AI & Robotics, and Data Analytics.

Guidelines for Laboratory Conduction

- List of recommended programming assignments and sample mini-projects is provided for reference.
- Referring these, Course Teacher or Lab Instructor may frame the assignments/mini-project by understanding the prerequisites, technological aspects, utility and recent trends related to the respective courses.
- Preferably there should be multiple sets of assignments/mini-project and distribute among batches of students.
- Real world problems/application based assignments/mini-projects create interest among learners serving as foundation for future research or startup of business projects.
- Mini-project can be completed in group of 2 to 3 students.
- Software Engineering approach with proper documentation is to be strictly followed.
- Use of open source software is to be encouraged.
- Instructor may also set one assignment or mini-project that is suitable to respective course beyond the scope of syllabus.

Operating System recommended :- 64-bit Open source Linux or its derivative

Programming Languages: C++/JAVA/PYTHON/R

Programming tools recommended: Front End: Java/Perl/PHP/Python/Ruby/.net, Backend : MongoDB/MYSQL/Oracle, Database Connectivity : ODBC/JDBC, Additional Tools: Octave, Matlab, WEKA.

Guidelines for Student Journal

The laboratory assignments are to be submitted by student in the form of journal. Journal may consists of prologue, Certificate, table of contents, and <u>handwritten write-up</u> of each assignment (Title, Objectives, Problem Statement, Outcomes, software and Hardware requirements, Date of Completion, Assessment grade/marks and assessor's sign, <u>Theory- Concept in brief</u>, <u>Algorithm/Database design</u>, test cases, conclusion/analysis). <u>Program codes with sample output</u> of all performed assignments are to be submitted as softcopy.

As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part of write-ups and program listing to journal may be avoided. Use of digital storage media/DVD containing students programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints at Laboratory.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments performance of student. Each lab assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness reserving weightage for successful mini-project completion and related documentation.

Guidelines for Practical Examination

- Both internal and external examiners should jointly frame suitable problem statements for practical examination based on the term work completed.
- During practical assessment, the expert evaluator should give the maximum weightage to the satisfactory implementation of the problem statement.
- The supplementary and relevant questions may be asked at the time of evaluation to test the student's for advanced learning, understanding of the fundamentals, effective and efficient implementation.
- Encouraging efforts, transparent evaluation and fair approach of the evaluator will not create any uncertainty or doubt in the minds of the students. So adhering to these principles will consummate our team efforts to the promising boost to the student's academics.

Guidelines for Instructor's Manual

The instructor's manual is to be developed as a hands-on resource and as ready reference. The instructor's manual need to include prologue (about University/program/ institute/ department/foreword/ preface etc), University syllabus, conduction and Assessment guidelines, topics under consideration-concept, objectives, outcomes, set of typical applications/assignments/ guidelines, references among others.

Suggested List of Laboratory Assignments

(any 04 assignments per High Performance Computing, AI, and Data Analytics and Mini-project per course)

410241:: High Performance Computing

Note: for all programming assignments of HPC-

- Select the suitable model of a parallel computation (Data parallel model, Task graph model, Work pool model, Master slave model, Producer consumer or pipeline model, Hybrid model or other) for algorithm to be developed by considering a strategy for dividing the data, processing method and suitable strategy to reduce interactions.
- Assume suitable processor model, topology, load distribution strategy and Communication.
- Utilize all available resources.
- Test on data set of sufficiently large size
- Compute Total cost and Efficiency as
- Total Cost = Time complexity × Number of processors used Efficiency = WCSA/WCPA

(WCSA--Worst case execution time of sequential algorithm and WCPA--Worst case execution time of the parallel algorithm)

- Compare performance by varying number of processors used and also with sequential algorithm.
- a) Implement Parallel Reduction using Min, Max, Sum and Average operations.
 b) Write a CUDA program that, given an N-element vector, find-

	•The maximum element in the vector
	•The minimum element in the vector
	•The arithmetic mean of the vector
	•The standard deviation of the values in the vector
	Test for input N and generate a randomized vector V of length N (N should be large). The
	program should generate output as the two computed maximum values as well as the time
	taken to find each value.
2	
2.	Vector and Matrix Operations-
	Design parallel algorithm to
	1. Add two large vectors
	2. Multiply Vector and Matrix
	3. Multiply two N × N arrays using n^2 processors
3.	Parallel Sorting Algorithms-
	For Bubble Sort and Merger Sort, based on existing sequential algorithms, design and
	implement parallel algorithm utilizing all resources available.
4.	Parallel Search Algorithm-
4.	Design and implement parallel algorithm utilizing all resources available. for
	Binary Search for Sorted Array
	• Depth-First Search (tree or an undirected graph) OR
	• Breadth-First Search (tree or an undirected graph) OR
	• Best-First Search that (traversal of graph to reach a target in the shortest possible
	path)
5.	Parallel Implementation of the K Nearest Neighbors Classifier
	Sample Mini Projects
(
6.	Compression Module (Image /Video) Large amount of bandwidth is required for transmission or storage of images. This has driven
	the research area of image compression to develop parallel algorithms that compress images
	the research area of image compression to develop parallel algorithms that compress images.
	OR
	OR For video: RGB To YUV Transform concurrently on many core GPU
7.	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression
	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU
7. 8.	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding
8.	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding Huffman encoding concurrently on many core GPU
	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding Huffman encoding concurrently on many core GPU Database Query Optimization
8.	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding Huffman encoding concurrently on many core GPU Database Query Optimization Long running database Query processing in parallel
8. 9.	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding Huffman encoding concurrently on many core GPU Database Query Optimization Long running database Query processing in parallel 410242: Artificial Intelligence and Robotics
8.9.1.	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding Huffman encoding concurrently on many core GPU Database Query Optimization Long running database Query processing in parallel 410242: Artificial Intelligence and Robotics Implement Tic-Tac-Toe using A* algorithm
8. 9.	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding Huffman encoding concurrently on many core GPU Database Query Optimization Long running database Query processing in parallel 410242: Artificial Intelligence and Robotics Implement Tic-Tac-Toe using A* algorithm Implement 3 missionaries and 3 cannibals problem depicting appropriate graph. Use A*
8.9.1.	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding Huffman encoding concurrently on many core GPU Database Query Optimization Long running database Query processing in parallel 410242: Artificial Intelligence and Robotics Implement Tic-Tac-Toe using A* algorithm
 8. 9. 1. 2. 	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding Huffman encoding concurrently on many core GPU Database Query Optimization Long running database Query processing in parallel 410242: Artificial Intelligence and Robotics Implement Tic-Tac-Toe using A* algorithm Implement 3 missionaries and 3 cannibals problem depicting appropriate graph. Use A* algorithm.
8.9.1.	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding Huffman encoding concurrently on many core GPU Database Query Optimization Long running database Query processing in parallel 410242: Artificial Intelligence and Robotics Implement Tic-Tac-Toe using A* algorithm Implement 3 missionaries and 3 cannibals problem depicting appropriate graph. Use A* algorithm. Solve 8-puzzle problem using A* algorithm. Assume any initial configuration and define goal
 8. 9. 1. 2. 	OR For video: RGB To YUV Transform concurrently on many core GPU Generic Compression Run length encoding concurrently on many core GPU Encoding Huffman encoding concurrently on many core GPU Database Query Optimization Long running database Query processing in parallel 410242: Artificial Intelligence and Robotics Implement Tic-Tac-Toe using A* algorithm Implement 3 missionaries and 3 cannibals problem depicting appropriate graph. Use A* algorithm.

.

	Faculty of Engineering						Savitriba	i Phule Pune	University	
	one place to another. U	se Mean	s-Ends a	nalysis v	with all th	ne steps r	evealed			
5.	Implement any one of t			~		1				
	 Medical Diagnosis of 10 diseases based on adequate symptoms 									
	Identifying bird				-	J 1				
5.	Implement alpha-beta p					ample an	d justif	the prun	ing.	
7.	Develop elementary ch								_0	
3.	Solve following 6-tiles		00	<u> </u>		<u> </u>				
•		r		8 -		,				
			1	1		1				
	Initial Configuration	В	W	В	W	В	W			
		В	В	В	w	w	W			
	Final Configuration	U	D	D			~~~			
					-		-			
	Constraint: Tiles can b	e shifted	l left or r	ight 1 or	· 2 positic	ns with a	rost 1 ar	d 2 respe	ctively	
).	Implement goal stack p			-	-			-		
•	implement gour stuck p	iaiiiiig		onowing	, comigui				iiu,	
	в			C	в					
	AC	D		A	D					
						-				
	Start			Goal						
0.	Use Heuristic Search T	echniqu	es to Imp	olement	Hill-Clim	bing Alg	orithm.			
1.	Use Heuristic Search T	echniqu	es to Im	plement	Best first	search (Best-So	lution but	not always	
	optimal) and A* algorit	hm (Alv	vays giv	es optim	al solutio	n).			-	
2.	Constraint Satisfaction	Problem	1:							
	Implement crypt-arithm	netic pro	blem or	n-queens	s or grapł	o coloring	g proble	m (Branc	h and	
	Bound and Backtrackin	lg)								
13.	Implement syntax analy	ysis for t	he assert	tive Engl	lish stater	nents. Th	e stages	s to be exe	ecuted are,	
	Sentence segme	ntation								
	Word tokenizati	ion								
	• Part-of-speech/	norpho	syntactic	tagging						
	Syntactic parsin	ig (Üse a	iny of th	e parser	like Stant	ford)				
		<u> </u>		-						
			410243	:: Data A	Analytics					
									Eromo (or	
	Download the Iris	flower	Download the Iris flower dataset or any other dataset into a DataFrame. (eg							
l .									Tame. (eg	
•	https://archive.ics.uci.ed	du/ml/da	atasets/Ir	<u>is</u>)Use	Python/R	and Per	form fol	lowing –		
	https://archive.ics.uci.ee • How many fe	du/ml/da eatures a	atasets/Ir	<u>is</u>) Use and wha	Python/R t are their	and Peri types (e	form fol .g., num	lowing – ieric, nom	inal)?	
- •	 <u>https://archive.ics.uci.ee</u> How many fe Compute and 	<u>du/ml/da</u> eatures a l display	atasets/Ir re there summar	<u>is</u>) Use and wha ry statisti	Python/R t are their ics for ea	and Pert types (e ch featur	form fol .g., num e availal	lowing – leric, nom ple in the o	inal)? dataset.	
l .	 https://archive.ics.uci.ed How many fe Compute and (eg. minimur 	du/ml/da eatures a l display n value,	atasets/Ir re there summar	<u>is</u>) Use and wha ry statisti	Python/R t are their ics for ea	and Pert types (e ch featur	form fol .g., num e availal	lowing – leric, nom ple in the o	inal)? dataset.	
Ι.	 https://archive.ics.uci.ee How many for Compute and (eg. minimum and percentil 	<u>du/ml/da</u> eatures a l display n value, es	atasets/Ir re there summar maximu	is) Use and wha ry statisti m value,	Python/R t are their ics for eac , mean, ra	and Pert types (e ch featur inge, star	form fol .g., num e availal idard de	lowing – heric, nom ble in the viation, va	inal)? dataset. ariance	
1.	 https://archive.ics.uci.ex How many fe Compute and (eg. minimur and percentil Data Visualiz 	du/ml/da eatures a l display n value, es zation-C	atasets/Ir are there summar maximu reate a h	is) Use and wha ry statisti m value, istogram	Python/R t are their ics for each , mean, ra n for each	and Pert types (e ch featur inge, star	form fol .g., num e availal idard de	lowing – heric, nom ble in the viation, va	inal)? dataset. ariance	
1.	 https://archive.ics.uci.en How many fe Compute and (eg. minimur and percentil Data Visualiz feature distribution 	du/ml/da eatures a l display n value, es zation-C butions.	atasets/Ir re there summar maximu reate a h Plot eac	is) Use and wha ry statisti m value, istogram	Python/R t are their ics for eac , mean, ra n for each ram.	and Peri types (e ch featur inge, star feature i	form fol .g., num e availal idard de n the da	lowing – leric, nom ble in the o viation, va taset to ill	inal)? dataset. ariance ustrate the	
1.	 https://archive.ics.uci.ex How many fe Compute and (eg. minimur and percentil Data Visualiz feature distril Create a boxy 	du/ml/da eatures a l display n value, es zation-C butions. plot for o	atasets/Ir re there summar maximu reate a h Plot eac each feat	is) Use and wha ry statisti im value, istogram ch histog ure in th	Python/R t are their ics for each , mean, ra n for each ram. e dataset.	and Peri types (e ch featur inge, star feature i All of t	form fol .g., num e availal idard de n the da he boxp	lowing – heric, nom ole in the viation, va taset to ill lots shoul	inal)? dataset. ariance ustrate the	
	 https://archive.ics.uci.en How many fe Compute and (eg. minimur and percentil Data Visualiz feature distril Create a boxy combined interview 	du/ml/da eatures a l display n value, es zation-C butions. plot for o to a sing	atasets/Ir re there summar maximu reate a h Plot eac each feat le plot.	is) Use and wha ry statisti m value, istogram ch histog ure in th Compare	Python/R t are their ics for each , mean, ra n for each ram. e dataset. e distribut	and Peri types (e ch featur inge, star feature i All of t ions and	form fol .g., num e availal idard de n the da he boxp identify	lowing – heric, nom ole in the viation, va taset to ill lots shoul outliers.	inal)? dataset. ariance lustrate the d be	
2.	 https://archive.ics.uci.en How many fe Compute and (eg. minimur and percentil Data Visualiz feature distril Create a boxy combined int 	du/ml/da eatures a l display n value, es zation-C butions. plot for o a sing ns Diabe	atasets/Ir re there summar maximu reate a h Plot eac each feat le plot. (tes datas	is) Use and wha ry statisti im value, istogram ch histog ure in th Compare et. Use N	Python/R t are their ics for each , mean, ra n for each ram. e dataset. e distribut Naive Bay	and Peri types (e ch feature inge, star feature i All of t ions and yes' Algo	form fol .g., num e availat adard de n the da he boxp identify prithm fo	lowing – leric, nom ole in the o viation, va taset to ill lots shoul outliers. or classifie	inal)? dataset. ariance lustrate the d be	
	 https://archive.ics.uci.ex How many fe Compute and (eg. minimur and percentil Data Visualiz feature distril Create a boxy combined int Download Pima Indiar Load the data 	du/ml/da eatures a l display n value, es zation-C butions. plot for o to a sing as Diabe a from C	atasets/Ir re there summar maximu reate a h Plot eac each feat le plot. tes datas	is) Use and wha ry statisti m value, istogram ch histog ure in th Compare et. Use N and split	Python/R t are their ics for each , mean, ra n for each ram. e dataset. e distribut Naive Bay it into tra	and Peri types (e ch featur inge, star feature i All of t ions and yes' Algo uning an	form fol .g., num e availal idard de n the da he boxp identify prithm fo l test da	lowing – heric, nom ole in the viation, va taset to ill lots shoul outliers. or classific tasets.	inal)? dataset. ariance lustrate the d be	
	 https://archive.ics.uci.ex How many fe Compute and (eg. minimur and percentil Data Visualiz feature distril Create a boxy combined int Download Pima Indiar Load the data summarize the 	du/ml/da eatures a l display n value, es zation-C butions. plot for o to a sing ns Diabe a from C ne prope	atasets/Ir re there summan maximu reate a h Plot each each feat le plot. (tes datas SV file a rties in th	is) Use and wha ry statisti istogram ch histog ure in th Compare et. Use N and split he trainin	Python/R t are their ics for each , mean, ra n for each ram. e dataset. e distribut Naive Bay it into tra	and Peri types (e ch featur inge, star feature i All of t ions and yes' Algo uning an	form fol .g., num e availal idard de n the da he boxp identify prithm fo l test da	lowing – heric, nom ole in the viation, va taset to ill lots shoul outliers. or classific tasets.	inal)? dataset. ariance lustrate the d be	
	 https://archive.ics.uci.ex How many fe Compute and (eg. minimur and percentil Data Visualiz feature distril Create a boxy combined int Download Pima Indiar Load the data 	du/ml/da eatures a l display n value, es zation-C butions. plot for o to a sing ns Diabe a from C ne prope and mal	atasets/Ir re there summar maximu reate a h Plot eac each feat le plot. (tes datas SV file a rties in the	is) Use and wha ry statisti im value, istogram ch histog ure in th Compare et. Use N and split he trainin tions.	Python/R t are their ics for each , mean, ra n for each ram. e dataset. distribut Vaive Bay it into tra ng dataset	and Peri- types (e ch feature inge, star feature i All of t ions and yes' Algo ining and t so that y	form fol .g., num e availal idard de n the da he boxp <u>identify</u> orithm fo d test da we can c	lowing – heric, nom ole in the viation, va taset to ill lots shoul outliers. or classific tasets. calculate	inal)? dataset. ariance lustrate the d be	

Faculty of Engineering

3.	Write a Hadoop program that counts the number of occurrences of each word in a text file.		
4.	Write a program that interacts with the weather database. Find the day and the station with the maximum snowfall in 2013		
5.	Use Movies Dataset. Write the map and reduce methods to determine the average ratings of movies. The input consists of a series of lines, each containing a movie number, user number, rating, and a timestamp: The map should emit movie number and list of rating, and reduce should return for each movie number a list of average rating.		
6.	Trip History Analysis: Use trip history dataset that is from a bike sharing service in the		
	United States. The data is provided quarter-wise from 2010 (Q4) onwards. Each file has 7		
columns. Predict the class of user. Sample Test data set available here			
	https://www.capitalbikeshare.com/trip-history-data		
7.	Bigmart Sales Analysis: For data comprising of transaction records of a sales store. The data		
	has 8523 rows of 12 variables. Predict the sales of a store. Sample Test data set available		
	here https://datahack.analyticsvidhya.com/contest/practice-problem-big-mart-sales-iii/		
8.	Twitter Data Analysis: Use Twitter data for sentiment analysis. The dataset is 3MB in size and		
	has 31,962 tweets. Identify the tweets which are hate tweets and which are not. Sample		
	Test data set available here https://datahack.analyticsvidhya.com/contest/practice-problem-		
	twitter-sentiment-analysis/		
9.	Time Series Analysis: Use time series and forecast traffic on a mode of transportation. Sample		
	Test data set available here <u>https://datahack.analyticsvidhya.com/contest/practice-problem</u>		
	time-series-2/		

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) 410247:Laboratory Practice II

Teaching Scheme:	Credit	Examination Scheme:
Practical : 04 Hours/Week	02	Term Work: 50 Marks
		Presentation: 50 Marks

Companion Courses: 410244 and 410245

Course Objectives and Outcomes: Practical hands on is the absolute necessity as far as employability of the learner is concerned. The presented course is solely intended to enhance the competency by undertaking the laboratory assignments of the core courses. Enough choice is provided to the learner to choose an elective of one's interest.

Laboratory Practice II is companion lab for elective course I and elective course II.

Guidelines for Laboratory Conduction

- List of recommended programming assignments and sample mini-projects is provided for reference.
- Referring these, Course Teacher or Lab Instructor may frame the assignments/mini-project by understanding the prerequisites, technological aspects, utility and recent trends related to the respective courses.
- Preferably there should be multiple sets of assignments/mini-project and distribute among batches of students.
- Real world problems/application based assignments/mini-projects create interest among learners serving as foundation for future research or startup of business projects.
- Mini-project can be completed in group of 2 to 3 students.
- Software Engineering approach with proper documentation is to be strictly followed.
- Use of open source software is to be encouraged.
- Instructor may also set one assignment or mini-project that is suitable to respective course beyond the scope of syllabus.

Operating System recommended :- 64-bit Open source Linux or its derivative

Programming Languages: C++/JAVA/PYTHON/R

Programming tools recommended: Front End: Java/Perl/PHP/Python/Ruby/.net, Backend : MongoDB/MYSQL/Oracle, Database Connectivity : ODBC/JDBC, Additional Tools: Octave, Matlab, WEKA.

Guidelines for Student Journal

The laboratory assignments are to be submitted by student in the form of journal. Journal may consists of prologue, Certificate, table of contents, and <u>handwritten write-up</u> of each assignment (Title, Objectives, Problem Statement, Outcomes, software and Hardware requirements, Date of Completion, Assessment grade/marks and assessor's sign, <u>Theory- Concept in brief</u>, <u>Algorithm/Database design</u>, test cases, conclusion/analysis). <u>Program codes with sample output</u> of all performed assignments are to be submitted as softcopy.

As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part of write-ups and program listing to journal may be avoided. Use of digital storage media/DVD containing students programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints at Laboratory.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments performance of student. Each lab assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness reserving weightage for successful mini-project completion and related documentation.

Guidelines for Practical Examination

- It is recommended to conduct examination based on Mini-Project demonstration and related skill learned. Team of 2 to 3 students may work on mini-project. During the assessment, the expert evaluator should give the maximum weightage to the satisfactory implementation and software engineering approach followed.
- The supplementary and relevant questions may be asked at the time of evaluation to test the student's for advanced learning, understanding, effective and efficient implementation and demonstration skills.
- Encouraging efforts, transparent evaluation and fair approach of the evaluator will not create any uncertainty or doubt in the minds of the students. So adhering to these principles will consummate our team efforts to the promising start of the student's academics.

Guidelines for Instructor's Manual

The instructor's manual is to be developed as a hands-on resource and as ready reference. The instructor's manual need to include prologue (about University/program/ institute/ department/foreword/ preface etc), University syllabus, conduction and Assessment guidelines, topics under consideration-concept, objectives, outcomes, set of typical applications/assignments/ guidelines, references among others.

Suggested List of Laboratory Assignments

Recommended / Sample set of assignments and mini projects for reference for all four courses offered for Elective I and for all four courses offered for Elective II. Respective Student have to complete laboratory work for elective I and II that he/she has opted.

410244: Elective I

410244(A) : Digital Signal Processing

- 1. Develop a program to generate samples of sine, Cosine and exponential signals at specified sampling frequency and signal parameters. (Test the results for different analog frequency (F) and sampling frequency (Fs))
- 2. Find the output of a system described by given difference equation and initial conditions for given input sequence. (Solution of difference equation) (Obtain the response for different systems by changing Degree of difference equation (N) and coefficients and also for different input sequence x(n). Observe the response by considering system as FIR and IIR system)
- **3.** Write a program to plot the magnitude and phase response of a Fourier Transform (FT). (Observe the spectrum for different inputs. Observe the Periodicity.)
- 4. Find the N point DFT / IDFT of the given sequence x (n). Plot the magnitude spectrum |X(K)| Vs K. (Analyze the output for different N and the same input sequence x(n). Also observe the periodicity and symmetry property)
- 5. Find the N point circular convolution of given two sequences. Test it for Linear convolution. Compute the circular convolution of given two sequences using DFT and IDFT.

- **Faculty of Engineering** Savitribai Phule Pune University Develop a program to plot the magnitude and phase response of a given system (given: h(n): 6. impulse response of system S) (Observe the frequency response for different systems. Compare the frequency response of a system (filter) for different length h(n) i.e filter coefficients) 7. Mini-Project 1: Design and Develop the N-point radix-2 DIT or DIF FFT algorithm to find DFT or IDFT of given sequence x (n). (Analyze the output for different N. Program should work for any value of N and output should be generated for all intermediate stages.) Mini-Project 2: Obtain the Fourier transform of different window functions to plot the 8. magnitude and phase spectrums. (Window functions: Rectangular, Triangular, Bartlett. Hamming, Henning, Kaiser. Observe and compare the desirable features of window sequences for different length. Observe the main and side lobes) Mini-Project 3: Design an FIR filter from given specifications using windowing method. 9. (Application should work for different types of filter specifications i.e. LPF, HPF, BPF etc and all window sequences. Plot the frequency response for different frequency terms i.e. analog and DT frequency) 10. Mini-Project 4: Design of IIR filter for given specifications using Bilinear Transformation. (Generalized code to accept any filter length for a transfer function H(Z). Application should work for different types of filter specifications i.e. LPF, HPF, BPF etc. and for different transfer functions of an analog filter) 410244(B): Software Architecture and Design Patterns Mini-Project 1: Narrate concise System Requirements Specification and organize the problem 1. domain area into broad subject areas and identify the boundaries of problem/system. Identify and categorize the target system services with detailed service specifications modeled with component diagram incorporating appropriate architectural style and coupling. Design the
 - service layers and tiers modeled with deployment diagram accommodating abstraction, autonomy, statelessness and reuse. Map the service levels and primitives to appropriate Strategies for data processing using Client-Server Technologies as applicable.
- 2. Mini-Project 2: Select a moderately complex system and narrate concise requirement specification for the same. Design the system indicating system elements organizations using applicable architectural styles and design patterns with the help of a detailed Class diagram depicting logical architecture. Specify and document the architecture and design pattern with the help of templates. Implement the system features and judge the benefits of the design patterns accommodated.

410244(C): Pervasive and Ubiquitous Computing

Mini-Projects are to be designed so as to use,

- No / minimal extra hardware,
- uses open source software's, •
- need hardly any subscription / telephony / data charges.
- Design and build a sensing system using micro-controllers like Arduino / Raspberry Pi / Intel 1. Galileo to sense the environment around them and act accordingly.
- 2. Design and build a mobile application with context awareness to determine the remaining battery level depending on the users current usage patterns.
- Design and build a music streaming system and a smart mobile application to use the speakers 3. or headphones of the smart phone of multiple phones to stream stored / live music during a party (instead of using large speakers).
- Smart Mobile Application with orientation sensing for users to put the phone in meeting / 4. silent mode- OR- outdoor/ loud mode based on the orientation of the device.

-OR-

Smart Mobile Application with ambient sound / noise sensing to adjust the volume of the

 various eating joints in the area you currently are. The mobile application should give you inputs / recommendations / suggestions on which eating joints are preferred by whom and for what eating items, with their ratings etc. Mini-Project 2: Smart Mobile Application as a Muscum Guide Build a Mobile Application as a museum guide, the device scans the QR codes on the artifacts and gives an interactive detailed explanation using Audio / Text / Video about the muscum artifact, using location of the user and the list of previously seen artifacts, the mobile application can suggest / recommend which next artifacts to be seen be the user Mini-Project 3: Smart Mobile Application as a Travel / Route Guide, Scenario - You are visiting an ancient monument. There is no local guide available. The previous users have commented on various locations where artifacts can be scen, photo are uploaded. The smart mobile application will give you directions / recommendations / suggestions on what to see and where, including narratives on the same. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Meisaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load inte destination tables using an ETL tool. For Example: Business		sacurty of Engineering Savitribal Phule Pune University
 Smart Mobile Application with ambient light sensing to adjust the screen brightness automatically. Mini-Project 1: Smart Mobile Application for Location-Based Messaging Design and build a Location-Based Messaging system where users have commented on various eating joints in the area you currently are. The mobile application should give you inputs / recommendations / suggestions on which eating joints are preferred by whom and for what eating items, with their ratings etc. Mini-Project 2: Smart Mobile Application as a Muscum Guide Build a Mobile Application as a muscum guide, the device scans the QR codes on the artifacts and gives an interactive detailed explanation using Audio / Text / Video about the muscum artifact using location of the user and the list of previously seen artifacts, the mobile application can suggest / recommend which next artifacts to be seen be the user Mini-Project 3: Smart Mobile Application as a Travel / Route Guide, Scenario - You are visiting an ancient monument. There is no local guide available. The previous users have commented on various locations where artifacts can be seen, photo are uploaded. The smart mobile application will give you directions / recommendations / suggestions or what to see and where, including narratives on the same. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services Mapping Technology Mobile Web surg an ETL tool. For Example: Business Origination: Sal		-
 5. Mini-Project 1: Smart Mobile Application for Location-Based Messaging Design and build a Location-Based Messaging system where users have commented or various eating joints in the area you currently are. The mobile application should give you inputs / recommendations / suggestions on which eating joints are preferred by whom and for what eating items, with their ratings etc. 6. Mini-Project 2: Smart Mobile Application as a Muscum Guide Build a Mobile Application as a muscum guide, the device scans the QR codes on the artifacts and gives an interactive detailed explanation using Audio / Text / Video about the muscum artifact. using location of the user and the list of previously seen artifacts, the mobile application can suggest / recommend which next artifacts to be seen be the user 7. Mini-Project 3: Smart Mobile Application as a Travel / Route Guide, Scenario - You are visiting an ancient monument. There is no local guide available. The previous users have commented on various locations where artifacts can be scen, photo are uploaded. The smart mobile application will give you directions / recommendations / suggestions on what to see and where, including narratives on the same. 8. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, a. Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Modia Player Touch screen Mapping Technology Mobile Web Services 410244(D): Data Mining and Warchousing I. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and loa		Smart Mobile Application with ambient light sensing to adjust the screen brightness
 Design and build a Location-Based Messaging system where users have commented on various eating joints in the area you currently are. The mobile application should give you inputs / recommendations / suggestions on which eating joints are preferred by whom and for what eating items, with their ratings etc. Mini-Project 2: Smart Mobile Application as a Museum Guide Build a Mobile Application as a museum guide, the device scans the QR codes on the artifacts and gives an interactive detailed explanation using Audio / Text / Video about the museum artifact, using location of the user and the list of previously seen artifacts, the mobile application can suggest / recommend which next artifacts to be seen be the user Mini-Project 3: Smart Mobile Application as a Travel / Route Guide, Scenario - You are visiting an ancient monument. There is no local guide available. The previous users have commented on various locations where artifacts can be scen, photo are uploaded. The smart mobile application will give you directions / recommendations / suggestions on what to see and where, including narratives on the same. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Mecia Player Touch serven Mapping Technology Mobile Web Services 410244(D): Data Mining and Warchousing For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load intit destination tables using an ETL tool. For Example: Business Or	_	
 what eating items, with their ratings etc. Mini-Project 2: Smart Mobile Application as a Museum Guide Build a Mobile Application as a museum guide, the device scans the QR codes on the artifacts and gives an interactive detailed explanation using Audio / Text / Video about the museum artifact. using location of the user and the list of previously scen artifacts, the mobile application can suggest / recommend which next artifacts to be seen be the user Mini-Project 3: Smart Mobile Application as a Travel / Route Guide, Scenario - You are visiting an ancient monument. There is no local guide available. The previous users have commented on various locations where artifacts can be seen, photo are uploaded. The smart mobile application will give you directions / recommendations / suggestions on what to see and where, including narratives on the same. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 410244(D): Data Mining and Warehousing 11. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minim	5.	Mini-Project I: Smart Mobile Application for Location-Based Messaging Design and build a Location-Based Messaging system where users have commented on various eating joints in the area you currently are. The mobile application should give you
 Mini-Project 2: Smart Mobile Application as a Museum Guide Build a Mobile Application as a museum guide, the device scans the QR codes on the artifacts and gives an interactive detailed explanation using Audio / Text / Video about the museum artifact. using location of the user and the list of previously seen artifacts, the mobile application can suggest / recommend which next artifacts to be seen be the user 7. Mini-Project 3: Smart Mobile Application as a Travel / Route Guide, Scenario - You are visiting an ancient monument. There is no local guide available. The previous users have commented on various locations where artifacts can be seen, photo are uploaded. The smart mobile application will give you directions / recommendations / suggestions on what to see and where, including narratives on the same. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load inte destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the cl		inputs / recommendations / suggestions on which eating joints are preferred by whom and for what eating items, with their ratings etc.
 Build a Mobile Application as a museum guide, the device scans the QR codes on the artifacts and gives an interactive detailed explanation using Audio / Text / Video about the museum artifact. using location of the user and the list of previously seen artifacts, the mobile application can suggest / recommend which next artifacts to be seen be the user Mini-Project 3: Smart Mobile Application as a Travel / Route Guide, Scenario - You are visiting an ancient monument. There is no local guide available. The previous users have commented on various locations where artifacts can be seen, photo are uploaded. The smart mobile application will give you directions / recommendations / suggestions on what to see and where, including narratives on the same. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. Thesse include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch sercen Mobile Web Services 410244(D): Data Mining and Warehousing 140244(D): Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent	6.	
 7. Mini-Project 3: Smart Mobile Application as a Travel / Route Guide, Scenario - You are visiting an ancient monument. There is no local guide available. The previous users have commented on various locations where artifacts can be seen, photo are uploaded. The smart mobile application will give you directions / recommendations / suggestions on what to see and where, including narratives on the same. 8. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 1. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection rechniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification:		Build a Mobile Application as a museum guide, the device scans the QR codes on the artifacts and gives an interactive detailed explanation using Audio / Text / Video about the museum artifact. using location of the user and the list of previously seen artifacts, the mobile
 You are visiting an ancient monument. There is no local guide available. The previous users have commented on various locations where artifacts can be seen, photo are uploaded. The smart mobile application will give you directions / recommendations / suggestions on what to see and where, including narratives on the same. 8. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 10. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification:	7	
 have commented on various locations where artifacts can be seen, photo are uploaded. The smart mobile application will give you directions / recommendations / suggestions on what to see and where, including narratives on the same. 8. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Mcssaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 11. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load inte destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection rechniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification:	· •	
 The smart mobile application will give you directions / recommendations / suggestions on what to see and where, including narratives on the same. 8. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 1. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall.		
 what to see and where, including narratives on the same. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 1. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall.		
 8. Mini-Project 4: Design and build a 'Multifunctional Application' in the Mobile and Pervasive domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 1. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load inter destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minium 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection recall. 5. Mini project on classification: 		
 domain. The choice of application is to be determined so as to leverage the capabilities of typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 1. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection rechniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification:	8.	
 typical smart devices. These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 410244(D): Data Mining and Warehousing 1. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification:	0.	
 These include such characteristics as, Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 410244(D): Data Mining and Warehousing 1. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification:		
 Location awareness and GPS systems Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification:		
 Accelerometers Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services I. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification:		
 Messaging Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification:		
 Sensor detection capability Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services 410244(D): Data Mining and Warehousing 1. For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification:		
 Microphone and Camera Media Player Touch screen Mapping Technology Mobile Web Services For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision recall. Mini project on classification: 		
 Media Player Touch screen Mapping Technology Mobile Web Services For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		
 Touch screen Mapping Technology Mobile Web Services For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		
 Mapping Technology Mobile Web Services In For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load intervent destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		
 Mobile Web Services 410244(D): Data Mining and Warehousing For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		
 410244(D): Data Mining and Warehousing For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		
 For an organization of your choice, choose a set of business processes. Design star / snow flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		
 flake schemas for analyzing these processes. Create a fact constellation schema by combining them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		
 them. Extract data from different data sources, apply suitable transformations and load into destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 	1.	
 destination tables using an ETL tool. For Example: Business Origination: Sales, Order, Marketing Process. 2. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification: 		flake schemas for analyzing these processes. Create a fact constellation schema by combining
 Marketing Process. Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		them. Extract data from different data sources, apply suitable transformations and load into
 Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		destination tables using an ETL tool. For Example: Business Origination: Sales, Order,
 Consider a suitable dataset. For clustering of data instances in different groups, apply different clustering techniques (minimum 2). Visualize the clusters using suitable tool. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		
 clustering techniques (minimum 2). Visualize the clusters using suitable tool. 3. Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification: 	2	
 Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds. For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		
 strong association rules using support and confidence thresholds. For Example: Market Basket Analysis 4. Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification: 	`	
 For Example: Market Basket Analysis Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 	э.	
 Consider a suitable text dataset. Remove stop words, apply stemming and feature selection techniques to represent documents as vectors. Classify documents and evaluate precision, recall. Mini project on classification: 		
 techniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification: 		For Example: Market Basket Analysis
 techniques to represent documents as vectors. Classify documents and evaluate precision, recall. 5. Mini project on classification: 	4.	Consider a suitable text dataset. Remove stop words, apply stemming and feature selection
		techniques to represent documents as vectors. Classify documents and evaluate precision,
	5.	Mini project on classification:
		Consider a labeled dataset belonging to an application domain. Apply suitable data

preprocessing steps such as handling of null values, data reduction, discretization. For, prediction of class labels of given data instances, build classifier models using different techniques (minimum 3), analyze the confusion matrix and compare these models. Also apply cross validation while preparing the training and testing datasets.

For Example: Health Care Domain for predicting disease

410245: Elective II

410245(A): Distributed Systems

- **1.** Design and develop a basic prototype distributed system (e.g. a DFS).
- 2. Design and implement client server application using RPC/ RMI mechanism (Java)
- **3.** Design and implement a clock synchronization algorithm for prototype DS
- **4.** Implement Ring or Bully election algorithm for prototype DS.
- 5. Implement Ricart Agrawala's distributed algorithm for mutual exclusion.
- 6. Problem solving of Wait-die and Wait –wound scheme for deadlock prevention.
- 7. Simulate Wait for Graph based Centralized or Hierarchical or Distributed algorithm for deadlock detection.
- 8. Implementation of 2PC / Byzantine Generals Problem

Mini-Projects

Important properties your system should have:

• The system must support multiple, autonomous agents (either human or automated) contending for shared resources and performing real-time updates to some form of shared state.

• The state of the system should be distributed across multiple client or server nodes.

The only centralized service should be one that supports users logging on, adding or removing clients or servers, and other housekeeping tasks.

•The system should be robust

The system should be able to continue operation even if one of the participant nodes crashes.

It should be possible to recover the state of a node following a crash, so that it can resume operation. We will let you choose your own application, and we will give you wide latitude in the overall and the detailed design of your implementation.

Design, implement, and thoroughly test a distributed system, implementing - Shared document editing, in the style of Google docs. The system should support real-time editing and viewing by multiple participants. Multiple replicas would be maintained for fault tolerance. Caching and/or copy migration would be useful to minimize application response time.

Design, implement, and thoroughly test a distributed system, implementing - A low-latency notification system. E.g., watch a whole bunch of RSS feeds and send all subscribers an email when one is updated. Interface with both the raw RSS feeds and Google's update notification service. Replicate and partition the state of the monitoring system so that it can scale and survive node failures.

Design, implement, and thoroughly test a distributed system, implementing - An airline reservation system. Each airline would maintain its own collection of servers, with enough state replication to enable automatic fail-over. It would be possible to book travel that involves multiple airlines.

Design, implement, and thoroughly test a distributed system, implementing - Implement a distributed file system that does something interesting. Maybe you want one for storing your MP3s or movies. Or perhaps for something entirely different.

410245(B): Software Testing and Quality Assurance

- 1. Mini-Project 1: Create a small application by selecting relevant system environment /platform and programming languages. Narrate concise Test Plan consisting features to be tested and bug taxonomy. Prepare Test Cases inclusive of Test Procedures for identified Test Scenarios. Perform selective Black-box and White-box testing covering Unit and Integration test by using suitable Testing tools. Prepare Test Reports based on Test Pass/Fail Criteria and judge the acceptance of application developed.
- 2. Mini-Project 2: Create a small web-based application by selecting relevant system environment / platform and programming languages. Narrate concise Test Plan consisting features to be tested and bug taxonomy. Narrate scripts in order to perform regression tests. Identify the bugs using Selenium WebDriver and IDEand generate test reports encompassing exploratory testing.

410245(C):: Operation Research

1. The Transportation Problem:

Milk in a milk shed area is collected on three routes A, B and C. There are four chilling centers P, Q, R and S where milk is kept before transporting it to a milk plant. Each route is able to supply on an average one thousand liters of milk per day. The supply of milk on routes A, B and C are 150, 160 and 90 thousand liters respectively. Daily capacity in thousand liters of chilling centers is 140, 120, 90 and 50 respectively. The cost of transporting 1000 liters of milk from each route (source) to each chilling center (destination) differs according to the distance. These costs (in Rs.) are shown in the following table

	C	hilling (Centers	
Routes	Р	Q	R	S
А	16	18	21	12
В	17	19	14	13
С	32	11	15	10

The problem is to determine how many thousand liters of milk is to be transported from each route on daily basis in order to minimize the total cost of transportation.

2. Investment Problem:

A portfolio manager with a fixed budget of \$100 million is considering the eight investment opportunities shown in Table 1. The manager must choose an investment level for each alternative ranging from \$0 to \$40 million. Although an acceptable investment may assume any value within the range, we discretize the permissible allocations to intervals of \$10 million to facilitate the modeling. This restriction is important to what follows. For convenience we define a unit of investment to be \$10 million. In these terms, the budget is 10 and the amounts to invest are the integers in the range from 0 to 4. Following table provides the net annual returns from the investment opportunities expressed in millions of dollars. A ninth opportunity, not shown in the table, is available for funds left over from the first eight investments. The return is 5% per year for the amount invested, or equivalently, \$0.5 million for each \$10 million invested. The manager's goal is to maximize the total annual return without exceeding the budget

		Retu	rns f	rom l	Invest	tment	t Opp	ortui	ities			
		Amount			(Oppor	rtunit	v			1	
		Invested										
		(\$10	1	2	3	4	5	6	7	8		
		million)										
		0	0	0	0	0	0	0	0	0		
	6	1	4.1	1.8	1.5	2.2	1.3	4.2	2.2	1.0		
	2	2	5.8	3.0	2.5	3.8	2.4	5.9	3.5	1.7		
	6	3	6.5	3.9	3.3	4.8	3.2	6.6	4.2	2.3		
		4	6.8	4.5	3.8	5.5	3.9	6.8	4.6	2.8		
		41024	45(D)	:: Mo							1	
1.	Design simple GU		í						Design		ndroid Applicati	or
1.	for Phone Call or C			li acti	vity a	iiu iii		g. 1	Csigi	1 411 4		01
2.	Design an android		for m	edia p	layer.							
3.	Design an android	Application	for S	MS M	lanag	er						
4.	Design an android	Application	using	g Goo	gle M	ар То	Trace	e The	Locat	tion of	f Device	
5.	Design an android	Application	for F	rame	Anim	ation						
7.	 Zoom and V Navigation Marker and Monitoring Mini-Project 2: C following features SMS messa Bluetooth o Accessing V Asynchrono Use Alert b 	to specific l getting loca of location reate an app ging and en ptions Web service ous remote r	ocation ation to a p to a nail pr s netho	with to dd of rovisio d call	a pro	duct	to SQ	Lite d	lataba	se and	d make sure to a	dc
8.	 Mini-Project 3: 0 parameters using te Nearest Bas Signal Strent SIM Modult Mobility M 	elephony AF se Station ngths e Details anagement	PI Ma Inforr	nager	1		-			e net	work performan	ICE
9.	Mini-Project 4: Ci	reate an app	licatio	on for	Bank	using	g spini	ner, in	tent			
		nk both fori	ns, af	ter co	mplet	ting o	f first		-		noney in custom ould be directed	
10.	Mini-Project 5: C following methods. • Fees Metho	Create the n	nodul sulatio	e for on of f	paym fees, U omeo	lent o Jse cu	f fees istomi	zed T	oast f	or suc	demonstrating t ccessful payment mission deadline	of

• Demonstrate the online payment gateway.

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) 410248:Project Work Stage I

	DENDITIONE TOTA DIA	501
Teaching Scheme:	Credit	Examination Scheme:
Practical : 02 Hours/Week	02	Presentation: 50 Marks
Course Objectives:		

- To Apply the knowledge for solving realistic problem
- To develop problem solving ability
- To Organize, sustain and report on a substantial piece of team work over a period of several months
- To Evaluate alternative approaches, and justify the use of selected tools and methods,
- To Reflect upon the experience gained and lessons learned,
- To Consider relevant social, ethical and legal issues,
- To find information for yourself from appropriate sources such as manuals, books, research journals and from other sources, and in turn increase analytical skills.
- To Work in TEAM and learn professionalism.

Course Outcomes:

On completion of the course, student will be able to-

- Solve real life problems by applying knowledge.
- Analyze alternative approaches, apply and use most appropriate one for feasible solution.
- Write precise reports and technical documents in a nutshell.
- Participate effectively in multi-disciplinary and heterogeneous teams exhibiting team work, Inter-personal relationships, conflict management and leadership quality.

Guidelines

Project work Stage – I is an integral part of the Project work. In this, the student shall complete the partial work of the Project which will consist of problem statement, literature review, SRS, Model and Design. The student is expected to complete the project at least up to the design phase. As a part of the progress report of project work Stage-I, the candidate shall deliver a presentation on the advancement in Technology pertaining to the selected project topic. The student shall submit the duly certified progress report of Project work Stage-I in standard format for satisfactory completion of the work by the concerned guide and head of the Department/Institute.

The examinee will be assessed by a panel of examiners of which one is necessarily an external examiner. The assessment will be broadly based on work undergone, content delivery, presentation skills, documentation, question-answers and report.

<u>Follow guidelines and formats as mentioned in Project Workbook recommended by Board of Studies.</u>

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) 410249: Audit Course 5

In addition to credits, it is recommended that there should be audit course in preferably in each semester from second year to supplement their knowledge and skills. Student will be awarded the bachelor's degree if he/she earns 190 credits and clears all the audit courses specified in the syllabus. The student will be awarded grade as AP on successful completion of audit course. The student may opt for one of the audit courses per semester, starting in second year first semester. Though not mandatory, such a selection of the audit courses helps the learner to explore the subject of interest in greater detail resulting in achieving the very objective of audit course's inclusion. List of options offered is provided. Each student has to choose one audit course from the list per semester. Evaluation of audit courses are suggested.

Criteria:

The student registered for audit course shall be awarded the grade AP (Audit Course Pass) and shall be included such AP grade in the Semester grade report for that course, provided student has the minimum attendance as prescribed by the Savitribai Phule Pune University and satisfactory insemester performance and secured a passing grade in that audit course. No grade points are associated with this 'AP' grade and performance in these courses is not accounted in the calculation of the performance indices SGPA and CGPA. Evaluation of audit course will be done at institute level itself. (Ref- http://www.unipune.ac.in/Syllabi_PDF/revised-2015/engineering/UG_RULE_REGULATIONS_FOR_CREDIT_SYSTEM-2015_18June.pdf) Guidelines for Conduction and Assessment(Any one or more of following but not limited to)

• Visits (es/ Guest Lectures (Social/Field) and reports Istrations	 Surveys Mini Project Hands on experience on specific focused topic
Guidelines for	r Assessment (Any one or more of	following but not limited to)
• Writter	n Test	IPR/Publication
DemonPresent	strations/ Practical Test	• Report
Audit Course	3 Options	
AC5- I	Entrepreneurship Development	
AC5-II	Botnet of Things	
AC5-III	3D Printing	
AC5-IV	Industrial Safety and Environme	ent Consciousness
AC5-V	Emotional Intelligence	
AC5-VI	MOOC-Learn New Skill	
-	*	es listed at SPPU website too, if not opted earlier ents/Syllabus%202017/Forms/AllItems.aspx

Savitribai Phule Pune University, Pune Fourth Year of Computer Engineering (2015 Course) 410249: Audit Course 5

AC5 – I: Entrepreneurship Development

This Course Aims at Instituting Entrepreneurial skills in the students by giving an overview of, who the entrepreneurs are and what competences are needed to become an entrepreneur.

Course Objectives:

- To introduce the aspects of Entrepreneurship
- To acquaint with legalities in product development
- To understand IPR, Trademarks, Copyright and patenting
- To know the facets of functional plans, Entrepreneurial Finance and Enterprise Management

Course Outcome:

On completion of the course, learner will be able to-

- Understand the legalities in product development
- Undertake the process of IPR, Trademarks, Copyright and patenting
- Understand and apply functional plans
- Manage Entrepreneurial Finance
- Inculcate managerial skill as an entrepreneur

Course Contents:

- 1. Introduction: Concept and Definitions, Entrepreneur v/s Intrapreneur; Role of entrepreneurship in economic development; Entrepreneurship process; Factors impacting emergence of entrepreneurship; Managerial versus entrepreneurial Decision Making; Entrepreneur v/s Investors; Entrepreneurial attributes and characteristics; Entrepreneurs versus inventors; Entrepreneurial Culture; Women Entrepreneurs; Social Entrepreneurship; Classification and Types of Entrepreneurs; EDP Programmers; Entrepreneurial Training; Traits/Qualities of an Entrepreneurs.
- 2. Creating Entrepreneurial Venture : Generating Business idea- Sources of Innovation, methods of generating ideas, Creativity and Entrepreneurship; Business planning process; Drawing business plan; Business plan failures; Entrepreneurial leadership components of entrepreneurial leadership; Entrepreneurial Challenges; Legal issues forming business entity, considerations and Criteria, requirements for formation of a Private/Public Limited Company, Intellectual Property Protection Patents Trademarks and Copyrights.
- **3. Functional plans:** Marketing plan-for the new venture, environmental analysis, steps in preparing marketing plan, marketing mix, contingency planning; Organizational plan designing organization structure and Systems; Financial plan pro forma income statements, Ratio Analysis.
- **4.** Entrepreneurial Finance: Debt or equity financing, Sources of Finance Commercial banks, private placements, venture capital, financial institutions supporting entrepreneurs; Lease Financing; Funding opportunities for Startups in India.
- **5.** Enterprise Management: Managing growth and sustenance- growth norms; Factors for growth; Time management, Negotiations, Joint ventures, Mergers and acquisitions

- 1. Kumar, Arya, `` Entrepreneurship: Creating and Leading an Entrepreneurial Organization'', Pearson ISBN-10: 8131765784; ISBN-13: 978-8131765784 ...
- **2.** Hishrich., Peters, ``Entrepreneurship: Starting, Developing and Managing a New Enterprise'', ISBN 0-256-14147- 9
- 3. Irwin Taneja, ``Entrepreneurship,'' Galgotia Publishers. ISBN: 978-93-84044-82-4
- **4.** Charantimath, Poornima, ``Entrepreneurship Development and Small Business Enterprises,'' Pearson Education, ISBN, 8177582607, 9788177582604.

Savitribai Phule Pune University, Pune Fourth Year of Computer Engineering (2015 Course) 410249: Audit Course 5 AC5 – II: Botnet of Things

it Course 5 net of Things ious security attacks and knowledge to recognize and

This course aims to provide an understanding of the various security attacks and knowledge to recognize and remove common coding errors that lead to vulnerabilities. It gives an outline of the techniques for developing a secure application.

Course Objectives:

- To Understand the various IoT Protocols
- To Understand the IoT Reference Architecture and Real World Design Constraints
- To learn the concept of Botnet

Course Outcome:

On completion of the course, learner will be able to-

- Implement security as a culture and show mistakes that make applications vulnerable to attacks.
- Understand various attacks like DoS, buffer overflow, web specific, database specific, web spoofing attacks.
- Demonstrate skills needed to deal with common programming errors that lead to most security problems and to learn how to develop secure applications

Course Contents:

1. Introduction

- 2. IRC-Based Bot Networks
- 3. Anatomy of a Botnet: The Gaobot Worm
- 4. IoT Senosors and Security : Sensors and actuators in IoT, Communication and networking in IoT, Real-time data collection in IoT, Data analytics in IoT, IoT applications and requirements, Security threats and techniques in IoT, Data trustworthiness and privacy in IoT, Balancing utility and other design goals in IoT, Future of Botnets in the Internet of Things, Thingbots, Elements of Typical IRC Bot Attack, Malicious use of Bots and Botnet
- 5. Service Layer Protocols and Security : Security: PHP Exploits, Cross-Site Scripting and Other Browser-Side Exploits, Bots and Botnets, Service Layer -oneM2M, ETSI M2M, OMA, BBF – Security in IoT Protocols –MAC 802.15.4, 6LoWPAN, RPL, Application Layer Transport and Session layer protocols- transport Layer (TCP, MPTCP, UDP, DCCP, SCTP) - (TLS, DTLS) – Session Layer - HTTP, CoAP, XMPP, AMQP, MQTT

- 1. Bernd Scholz Reiter, Florian Michahelles, "Architecting the Internet of Things", Springer ISBN 978 3 642 19156 5 e ISBN 978 3 642 19157 2,
- 2. Threat Modeling, Frank Swiderski and Window Snyder, Microsoft Professional, 1 st Edition 2004
- **3.** Gunter Ollmann 2007. The Phishing Guide Understanding and Preventing Phishing Attacks. IBM Internet Security Systems.
- **4.** Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978 1 118 47347 4, Willy Publications
- 5. White Papers :- <u>https://www.sans.org/reading-room/whitepapers/malicious/bots-botnet-overview-1299</u>
- 6. <u>https://www-01.ibm.com/marketing/iwm/dre</u>
- 7. Mike Kuniavsky, "Smart Things: Ubiquitous Computing User Experience Design," Morgan Kaufmann Publishers.

Savitribai Phule Pune University, Pune Fourth Year of Computer Engineering (2015 Course) 410249: Audit Course 5 AC5 – III: 3D Printing

Course Objectives:

- To understand the principle of 3D printing
- To understand resource requirements of 3D printing
- To know the basic artwork needed for 3D printing

Course Outcomes:

On completion of the course, learner will be able to-

- Apply models for 3D printing
- Plan the resources for 3D printing
- Apply principles in 3D printing in real world

Course Contents:

1. Getting Started with 3D Printing: How 3D Printers Fit into Modern Manufacturing, Exploring the Types of 3D Printing, Exploring Applications of 3D Printing.

2. Outlining 3D Printing Resources: Identifying Available Materials for 3D Printing, Identifying Available Sources for 3D Printable Objects.

3. Exploring the Business Side of 3D Printing: Commoditizing 3D Printing, Understanding 3D Printing's Effect on Traditional lines of Business, Reviewing 3D Printing Research.

4. Employing Personal 3D printing Devices: Exploring 3D printed Artwork, Considering Consumer level 3D Printers, Deciding on RepEap of Your Own.

- 1. Richard Horne, Kalani Kirk Hausman, " 3D Printing for Dummies", Taschenbuch, ISBN: 9781119386315
- 2. Greg Norton, "3D Printing Business 3D Printing for Beginners How to 3D Print", JSBN:9781514785669
- **3.** Liza Wallach Kloski and Nick Kloski, "Getting Started with 3D Printing: A Hands-on Guide to the Hardware, Software, and Services Behind the New Manufacturing Revolution", Maker Media, ISBN: 1680450204
- **4.** Jeff Heldrich , "3D Printing: Tips on Getting Started with 3D Printing to Help you make Passive income for your Business"

Savitribai Phule Pune University, Pune Fourth Year of Computer Engineering (2015 Course) 410249: Audit Course 5

AC5 – IV: Industrial Safety and Environment Consciousness

Objective of Industrial Safety, Health Environment and Security covers virtually every important area in administration of SHE. It broadly discusses the major problems in safety management, occupational health and today's dynamic environment management of rapidly changing ambience, technological advances, whole gamut of safety laws, safety policy and it's designing and their meticulous implementation.

Course Objectives:

- To understand Industrial hazards and Safety requirements with norms
- To learn the basics of Safety performance planning
- To know the means of accident prevention
- To understand the impact of industrialization on environment
- To know the diversified industrial requirements of safety and security

Course Outcomes:

On completion of the course, learner will be able to-

- Formulate the plan for Safety performance
- Formulate the action plan for accidents and hazards
- Follow the safety and security norms in the industry
- Consider critically the environmental issues of Industrialization

Course Contents:

1. Introduction: Elements of safety programming, safety management, Upgrading developmental programmers: safety procedures and performance measures, education, training and development in safety.

2. Safety Performance Planning

Safety Performance: An overview of an accident, It is an accident, injury or incident, The safety professional, Occupational health and industrial hygiene. Understanding the risk: Emergency preparedness and response, prevention of accidents involving hazardous substances.

3. Accident Prevention

What is accident prevention?, Maintenance and Inspection, Monitoring Techniques, General Accident Prevention, Safety Education and Training.

4. Safety Organization

Basic Elements of Organized Safety, Duties of Safety Officer, Safe work Practices, Safety Sampling and Inspection, Job Safety Analysis(JSA), Safety Survey, On- site and Off-site Emergency Plan, Reporting of Accidents and Dangerous Occurrences.

5. Environment

Introduction, Work Environment, Remedy, pollution of Marine Environment and Prevention, Basic Environmental Protection Procedures, Protection of Environment in Global Scenario, Greenhouse Gases, Climate Change Impacts, GHG Mitigation Options, Sinks and Barriers,

6. Industrial Security(Industry wise)

General security Systems in Factories, Activation Security, Computer Security, Banking Security, V.I.P. Security, Women Security, Event Security, Security in Open Environments.

- 1. Basudev Panda ,"Industrial Safety, Health Environment and Security",Laxmi Publications, ISBN-10: 9381159432, 13: 978-9381159439
- 2. L.M. Deshmukh, "Industrial Safety Management", TMH, ISBN: 9780070617681

Savitribai Phule Pune University, Pune Fourth Year of Computer Engineering (2015 Course) 410249: Audit Course 5 AC5 – V: Emotional Intelligence

This Emotional Intelligence (EI) training course will focus on the five core competencies of emotional intelligence: self-awareness, self-regulation, motivation, empathy and interpersonal skills. Participants will learn to develop and implement these to enhance their relationships in work and life by increasing their understanding of social and emotional behaviors, and learning how to adapt and manage their responses to particular situations. Various models of emotional intelligence will be covered.

Course Objectives:

- To develop an awareness of EI models
- To recognize the benefits of EI
- To understand how you use emotion to facilitate thought and behavior
- To know and utilize the difference between reaction and considered response

Course Outcomes:

On completion of the course, learner will be able to-

- Expand your knowledge of emotional patterns in yourself and others
- Discover how you can manage your emotions, and positively influence yourself and others
- Build more effective relationships with people at work and at home
- Positively influence and motivate colleagues, team members, managers
- Increase the leadership effectiveness by creating an atmosphere that engages others

Course Contents:

- 1. Introduction to Emotional Intelligence (EI) : Emotional Intelligence and various EI models, The EQ competencies of self-awareness, self-regulation, motivation, empathy, and interpersonal skills, Understand EQ and its importance in life and the workplace
- 2. Know and manage your emotions: emotions, The different levels of emotional awareness, Increase your emotional knowledge of yourself, Recognize 'negative' and 'positive' emotions. The relationship between emotions, thought and behavior, Discover the importance of values, The impact of not managing and processing 'negative' emotions, Techniques to manage your emotions in challenging situations
- **3. Recognize emotions in others :**The universality of emotional expression, Learn tools to enhance your ability to recognize and appropriately respond to others' emotions, Perceiving emotions accurately in others to build empathy
- 4. Relate to others: Applying EI in the workplace, the role of empathy and trust in relationships, Increase your ability to create effective working relationships with others (peers, subordinates, managers, clients, Find out how to deal with conflict, Tools to lead, motivate others and create a high performing team.

- 1. Daniel Goleman," <u>Emotional Intelligence Why It Matters More Than IQ</u>,", Bantam Books, ISBN-10: 055338371X13: 978-0553383713
- 2. Steven Stein, "The EQ Edge", Jossey-Bass, ISBN : 978-0-470-68161-9
- 3. Drew Bird, "The Leader's Guide to Emotional Intelligence", ISBN: 9781535176002

Savitribai Phule Pune University, Pune Third Year of Computer Engineering (2015 Course) 410249: Audit Course 5 AC5 – VI & AC6-VI: MOOC-learn New Skill

Course Objectives:

- To promote interactive user forums to support community interactions among students, professors, and experts
- To promote learn additional skills anytime and anywhere
- To enhance teaching and learning on campus and online

Course Outcome:

On completion of the course, learner will acquire additional knowledge and skill.

About Course:

MOOCs (Massive Open Online Courses) provide affordable and flexible way to learn new skills, pursue lifelong interests and deliver quality educational experiences at scale. Whether you're interested in learning for yourself, advancing your career or leveraging online courses to educate your workforce, SWYAM, NPTEL, edx or similar ones can help.

World's largest SWAYAM MOOCs, a new paradigm of education for anyone, anywhere, anytime, as per your convenience, aimed to provide digital education free of cost and to facilitate hosting of all the interactive courses prepared by the best more than 1000 specially chosen faculty and teachers in the country. SWAYAM MOOCs enhances active learning for improving lifelong learning skills by providing easy access to global resources.

SWAYAM is a programme initiated by Government of India and designed to achieve the three cardinal principles of Education Policy viz., access, equity and quality. The objective of this effort is to take the best teaching learning resources to all, including the most disadvantaged. SWAYAM seeks to bridge the digital divide for students who have hitherto remained untouched by the digital revolution and have not been able to join the mainstream of the knowledge economy.

This is done through an indigenous developed IT platform that facilitates hosting of all the courses, taught in classrooms from 9th class till post-graduation to be accessed by anyone, anywhere at any time. All the courses are interactive, prepared by the best teachers in the country and are available, free of cost to the residents in India. More than 1,000 specially chosen faculty and teachers from across the Country have participated in preparing these courses.

The courses hosted on SWAYAM is generally in 4 quadrants – (1) video lecture, (2) specially prepared reading material that can be downloaded/printed (3) self-assessment tests through tests and quizzes and (4) an online discussion forum for clearing the doubts. Steps have been taken to enrich the learning experience by using audio-video and multi-media and state of the art pedagogy / technology. In order to ensure best quality content are produced and delivered, seven National Coordinators have been appointed: They are <u>NPTEL</u> for engineering and <u>UGC</u> for post-graduation education.

Guidelines:

Instructors are requested to promote students to opt for courses (not opted earlier) with proper mentoring. The departments will take care of providing necessary infrastructural and facilities for the learners.

References:

- 1. <u>https://swayam.gov.in/</u>
- 2. <u>https://onlinecourses.nptel.ac.in/</u>
- 3. <u>https://www.edx.org</u>

SEMESTER II

		avitribai Phule Pune Univ r of Computer Engineerin 410250: Machine Learni	g (2015 Course) ng	-
Teaching S TH: 03 H	Scheme: ours/Week	Credit 03		ition Scheme: er): 30 Marks r): 70 Marks
Prerequisi	te Courses: 207003-	Engineering Mathematics III		
Companio	n Course: 410254- L	aboratory Practice III		
	understand human lear	ning aspects and relate it with machine problem and apply machine learn		
	find optimized solutior		6 6	
Course Ou	itcomes:			
-	-	udent will be able to-		
	e e	ing based applications	4	:
		sing methods to prepare training da pervised and unsupervised machine		ing.
	lement different learni	-	icarining argorithini.	
		l deep learning concepts		
		Course Contents		
Unit I	l II	ntroduction to Machine learni	ng	08 Hours
Classic and	l adaptive machines,	Machine learning matters, Bey	ond machine learning	
Classic and and bio ins	l adaptive machines, pired adaptive syster	Machine learning matters, Bey ns, Machine learning and Big da	ond machine learning	-deep learning
Classic and and bio ins Important	l adaptive machines, pired adaptive syster Elements of Mach	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats,	ond machine learning	-deep learning
Classic and and bio ins Important	l adaptive machines, pired adaptive syster	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats,	ond machine learning	-deep learning
Classic and and bio insj Important approaches Unit II	l adaptive machines, pired adaptive syster Elements of Mach , Elements of inform	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats, nation theory.	ond machine learning nta. Learnability, Statis	-deep learning tical learning 08 Hours
Classic and and bio insj Important approaches Unit II Scikit- lear	l adaptive machines, pired adaptive syster Elements of Mach , Elements of inform n Dataset, Creating	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats, nation theory. Feature Selection	ond machine learning ata. Learnability, Statis categorical data, Mar	-deep learning tical learning 08 Hours aging missing
Classic and and bio insj Important approaches Unit II Scikit- lear features, D	l adaptive machines, pired adaptive syster Elements of Mach , Elements of inform n Dataset, Creating Data scaling and nor	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats, nation theory. Feature Selection training and test sets, managing rmalization, Feature selection a	ond machine learning nta. Learnability, Statis categorical data, Mar nd Filtering, Princip	-deep learning tical learning 08 Hours aging missing le Component
Classic and and bio insj Important approaches Unit II Scikit- lear features, D	adaptive machines, pired adaptive syster Elements of Mach , Elements of inform Dataset, Creating Data scaling and nor CA)-non negative m	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats, nation theory. Feature Selection training and test sets, managing	ond machine learning nta. Learnability, Statis categorical data, Mar nd Filtering, Princip	-deep learning tical learning 08 Hours aging missing le Component
Classic and and bio insj Important approaches Unit II Scikit- lear features, D Analysis(P	adaptive machines, pired adaptive syster Elements of Mach , Elements of inform Dataset, Creating Data scaling and nor CA)-non negative m	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats, nation theory. Feature Selection training and test sets, managing rmalization, Feature selection a	ond machine learning nta. Learnability, Statis categorical data, Mar nd Filtering, Princip	-deep learning tical learning 08 Hours aging missing le Component
Classic and and bio insy Important approaches Unit II Scikit- lear features, D Analysis(Pe Dictionary Unit III	adaptive machines, pired adaptive syster Elements of Mach , Elements of inform n Dataset, Creating Data scaling and nor CA)-non negative m Learning.	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats, nation theory. Feature Selection training and test sets, managing rmalization, Feature selection a natrix factorization, Sparse PCA	ond machine learning ata. Learnability, Statis categorical data, Mar and Filtering, Princip , Kernel PCA. Atom 1	-deep learning tical learning 08 Hours laging missing le Component Extraction and 08 Hours
Classic and and bio insy Important approaches Unit II Scikit- lear features, D Analysis(Pe Dictionary Unit III Linear reg	adaptive machines, pired adaptive syster Elements of Mach , Elements of inform n Dataset, Creating Data scaling and nor CA)-non negative m Learning.	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats, nation theory. Feature Selection training and test sets, managing malization, Feature selection a natrix factorization, Sparse PCA Regression odels, A bi-dimensional examp	ond machine learning ata. Learnability, Statis categorical data, Mar and Filtering, Princip , Kernel PCA. Atom 1 ple, Linear Regressio	-deep learning tical learning 08 Hours aging missing le Component Extraction and 08 Hours on and higher
Classic and and bio insy Important approaches Unit II Scikit- lear features, D Analysis(Pe Dictionary Unit III Linear reş dimensiona	adaptive machines, pired adaptive syster Elements of Mach , Elements of inform n Dataset, Creating Data scaling and nor CA)-non negative m Learning.	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats, nation theory. Feature Selection training and test sets, managing malization, Feature selection a natrix factorization, Sparse PCA Regression odels, A bi-dimensional examp and ElasticNet, Robust regression	ond machine learning ata. Learnability, Statis categorical data, Mar and Filtering, Princip , Kernel PCA. Atom 1 ple, Linear Regressio	-deep learning tical learning 08 Hours aging missing le Component Extraction and 08 Hours on and higher
Classic and and bio insy Important approaches Unit II Scikit- lear features, D Analysis(Pe Dictionary Unit III Linear reş dimensiona Polynomial	adaptive machines, pired adaptive syster Elements of Mach , Elements of inform n Dataset, Creating Data scaling and nor CA)-non negative m Learning. gression- Linear me ality, Ridge, Lasso a l regression, Isotonic	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats, nation theory. Feature Selection training and test sets, managing malization, Feature selection a natrix factorization, Sparse PCA Regression odels, A bi-dimensional examp and ElasticNet, Robust regression e regression,	ond machine learning ata. Learnability, Statis categorical data, Mar and Filtering, Princip , Kernel PCA. Atom I ple, Linear Regression	-deep learning tical learning 08 Hours aging missing le Component Extraction and 08 Hours on and higher ole consensus,
Classic and and bio insy Important approaches Unit II Scikit- lear features, D Analysis(Pe Dictionary Unit III Linear reg dimensiona Polynomial Logistic re	adaptive machines, pired adaptive syster Elements of Mach , Elements of inform n Dataset, Creating Data scaling and nor CA)-non negative m Learning. gression- Linear me ality, Ridge, Lasso a l regression, Isotonic egression-Linear class	Machine learning matters, Bey ns, Machine learning and Big da nine Learning- Data formats, nation theory. Feature Selection training and test sets, managing malization, Feature selection a natrix factorization, Sparse PCA Regression odels, A bi-dimensional examp and ElasticNet, Robust regression	ond machine learning ata. Learnability, Statis categorical data, Mar and Filtering, Princip , Kernel PCA. Atom I ple, Linear Regression on with random samp Implementation and 0	-deep learning tical learning 08 Hours aging missing le Component Extraction and 08 Hours on and higher ole consensus, Optimizations,

Unit IV

Naïve Bayes and Support Vector Machine

Bayes' Theorom, Naïve Bayes' Classifiers, Naïve Bayes in Scikit- learn- Bernoulli Naïve Bayes, Multinomial Naïve Bayes, and Gaussian Naïve Bayes.

Support Vector Machine(SVM)- Linear Support Vector Machines, Scikit- learn implementation-Linear Classification, Kernel based classification, Non- linear Examples. Controlled Support Vector Machines, Support Vector Regression.

Decision Trees- Impurity measures, Feature Importance. Decision Tree Classification with Scikitlearn, Ensemble Learning-Random Forest, AdaBoost, Gradient Tree Boosting, Voting Classifier.

Clustering Fundamentals- Basics, K-means: Finding optimal number of clusters, DBSCAN, Spectral Clustering. Evaluation methods based on Ground Truth- Homogeneity, Completeness, Adjusted Rand Index.

Introduction to Meta Classifier: Concepts of Weak and eager learner, Ensemble methods, Bagging, Boosting, Random Forests.

Unit VI	Clustering Techniques	08 Hours

Hierarchical Clustering, Expectation maximization clustering, Agglomerative Clustering-Dendrograms, Agglomerative clustering in Scikit- learn, Connectivity Constraints.

Introduction to Recommendation Systems- Naïve User based systems, Content based Systems, Model free collaborative filtering-singular value decomposition, alternating least squares.

Fundamentals of Deep Networks-Defining Deep learning, common architectural principles of deep networks, building blocks of deep networks.

Books:

Text:

- 1. Giuseppe Bonaccorso, "Machine Learning Algorithms", Packt Publishing Limited, ISBN-10: 1785889621, ISBN-13: 978-1785889622
- **2.** Josh Patterson, Adam Gibson, "Deep Learning: A Practitioners Approach", O'REILLY, SPD, ISBN: 978-93-5213-604-9, 2017 Edition 1st.

References:

- 1. Ethem Alpaydin, "Introduction to Machine Learning", PHI 2nd Edition-2013, ISBN 978-0-262-01243-0
- Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", Cambridge University Press, Edition 2012, *ISBN*-10: 1107422221; ISBN-13: 978-1107422223
- **3.** Tom Mitchell "Machine Learning" McGraw Hill Publication, ISBN :0070428077 9780070428072
- **4.** Nikhil Buduma, "Fundamentals of Deep Learning", O'REILLY publication, second edition 2017, ISBN: 1491925612

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) 410251: Information and Cyber Security

Teaching Scheme: TH: 03 Hours/WeekCredit 03Examination S In-Sem (Paper): 30 End-Sem (Paper): 30 End-Sem (Paper): 70Prerequisite Courses:310245-Computer NetworksCompanion Course:410254: Laboratory Practice IIICourse Objectives: information and cyber security.To offer an understanding of principle concepts, central topics and basic approaches information and cyber security.	Marks
In: 05 Hours/week 05 End-Sem (Paper): 70 Prerequisite Courses: 310245-Computer Networks Companion Course: 410254: Laboratory Practice III Course Objectives: • To offer an understanding of principle concepts, central topics and basic approaches information and cyber security.	
 Companion Course: 410254: Laboratory Practice III Course Objectives: To offer an understanding of principle concepts, central topics and basic approaches information and cyber security. 	
 Course Objectives: To offer an understanding of principle concepts, central topics and basic approaches information and cyber security. 	
• To offer an understanding of principle concepts, central topics and basic approaches information and cyber security.	
information and cyber security.	
	in
To know the basics of cryptography.To acquire knowledge of standard algorithms and protocols employed to provide	
confidentiality, integrity and authenticity.	
• To enhance awareness about Personally Identifiable Information (PII), Infor	rmation
Management, cyber forensics.	
Course Outcomes:	
On completion of the course, student will be able to-	
 Gauge the security protections and limitations provided by today's technology. Identify information security and cyber security threats. 	
 Analyze threats in order to protect or defend it in cyberspace from cyber-attacks. 	
 Build appropriate security solutions against cyber-attacks. 	
Course Contents	
Unit ISecurity Basics08 H	lours
Introduction, Elements of Information Security, Security Policy, Techniques, Steps, Cate	egories,
Operational Model of Network Security, Basic Terminologies in Network Security. Three	ats and
Vulnerability, Difference between Security and Privacy.	
Unit IIData Encryption Techniques And Standards08 H	lours
Introduction, Encryption Methods: Symmetric, Asymmetric, Cryptography, Substitution C	Ciphers.
Transposition Ciphers, Stenography applications and limitations, Block Ciphers and methods	nods of
operations, Feistal Cipher, Data Encryption Standard (DES), Triple DES, DES Design C	Criteria,
Weak Keys in DES Algorithms, Advance Encryption Standard (AES).	
Unit IIIPublic Key And Management08 H	lours
Public Key Cryptography, RSA Algorithm: Working, Key length, Security, Key Distri-	ibution,
Deffie-Hellman Key Exchange, Elliptic Curve: Arithmetic, Cryptography, Security, Authen	tication
methods, Message Digest, Kerberos, X.509 Authentication service.	
Digital Signatures: Implementation, Algorithms, Standards (DSS), Authentication Protocol.	
Unit IVSecurity Requirements08 H	lours

IP Security: Introduction, Architecture, IPV6, IPv4, IPSec protocols, and Operations, AH Protocol, ESP Protocol, ISAKMP Protocol, Oakkey determination Protocol, VPN. WEB Security: Introduction, Secure Socket Layer (SSL), SSL Session and Connection, SSL Record Protocol, Change Cipher Spec Protocol, Alert Protocol, Handshake Protocol. Electronic Mail Security: Introduction, Pretty Good Privacy, MIME, S/MIME, Comparison. Secure Electronic Transaction (SET).

Unit V	Firewall And Intrusion	08 Hou	irs
Introductio	n, Computer Intrusions. Firewall Introduction, Characteristics and types,	Benefits	and
limitations	Firewall architecture, Trusted Systems, Access Control. Intrusion de	etection, 1	IDS:
Need, Metl	nods, Types of IDS, Password Management, Limitations and Challenges.		

Confidentiality And Cyber Forensic Unit VI 08 Hours

Introduction to Personally Identifiable Information (PII), Cyber Stalking, PII impact levels with examples Cyber Stalking, Cybercrime, PII Confidentiality Safeguards, Information Protection Law: Indian Perspective.

Books:

Text:

- 1. Bernard Menezes, "Network Security and Cryptography", Cengage Learning India, 2014, ISBN No.: 8131513491
- 2. Nina Godbole, Sunit Belapure, "Cyber Security", Wiley India, 2014, ISBN No.: 978-81-345-2179-1

References:

- 1. Eoghan Casey, "Digital Evidence and Computer Crime Forensic Science, Computers and the Internet", ELSEVIER, 2011, ISBN 978-0-12-374268-1
- 2. Atul Kahate, "Cryptography and Network Security", Mc Graw Hill Publication, 2nd Edition, 2008, ISBN: 978-0-07-064823-4
- 3. William Stallings, "Cryptography and network security principles and practices", Pearson, 6th Edition, ISBN: 978-93-325-1877-3
- 4. Forouzan, "Cryptography and Network Security (SIE)", Mc Graw Hill, ISBN, 007070208X, 9780070702080
- 5. Dr. Nilakshi Jain-Digital Forensic: The Fascinating World of Digital Evidences-Wiley India-ISBN: 9788126565740

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) **Elective III** 410252(A): Advanced Digital Signal Processing **Examination Scheme:** Credit **Teaching Scheme:** In-Sem (Paper): 30 Marks TH: 03 Hours/Week 03 End-Sem (Paper): 70 Marks Prerequisite Courses: 410244(A)Digital Signal Processing **Companion Course:** 410255-Laboratory Practice IV **Course Objectives:** • To study the parametric methods for power spectrum estimation. • To study adaptive filtering techniques and applications of adaptive filtering. • To learn and understand Multi-rate DSP and applications • To explore appropriate transforms Understand basic concepts of speech production, speech analysis, speech coding and • parametric representation of speech Acquire knowledge about different methods used for speech coding and understand various applications of speech processing Learn and understand basics of Image Processing and various image filters with its applications **Course Outcomes:** On completion of the course, student will be able to-• Understand and apply different transforms for the design of DT/Digital systems Explore the knowledge of adaptive filtering and Multi-rate DSP • • Design DT systems in the field/area of adaptive filtering, spectral estimation and multi-rate DSP Explore use of DCT and WT in speech and image processing Develop algorithms in the field of speech, image processing and other DSP applications **Course Contents** Unit I **08 Hours DFT and Applications** DFT and Applications - Linear filtering, spectral leakage, Spectral resolution and selection of Window Length, Frequency analysis, 2-D DFT, applications in Image and Speech Processing Unit II **Adaptive FIR and IIR filter Design 08 Hours** Adaptive FIR and IIR filter Design – DT Filters, FIR and IIR filters, Adaptive FIR Filter design: Steepest descent and Newton method, LMS method, Applications, Adaptive IIR Filter design: Pade Approximation, Least square design, Applications **Unit III Multi-rate DSP and applications 08 Hours** Adaptive FIR and IIR filter Design – DT Filters, FIR and IIR filters, Adaptive FIR Filter design: Steepest descent and Newton method, LMS method, Applications, Adaptive IIR Filter design: Pade Approximation, Least square design, Applications

Fac	ulty of Engineering	Savitribai Phule	Pune University
Unit	IV	Spectral Estimation	08 Hours 🧹
Spectra	al Estimation – Estimation o	f density spectrum, Nonparametric method, Paran	netric method,
Evalua	tion ,DCT and WT – DCT	and KL transform, STFT, WT, Harr Wavelet a	nd Dubecheis
Wavel	et, Applications of DCT and	WT.	
Unit	V	Speech processing	08 Hours
Speech	processing - Speech coding	g: Phase Vocoder, LPC, Sub-band coding, Adapt	ive Transform
Coding	g, Harmonic Coding, Veo	ctor Quantization based Coders. Fundamental	s of Speech
recogn	ition, Speech segmentatior	n, Text-to-speech conversion, speech enhancen	nent, Speaker
Verific	cation, Applications.		
Unit	VI	Image Processing	08 Hours
Image	Processing – Image as 2D si	gnal and image enhancement techniques, filter des	sign: low pass,
highpa	ss and bandpass for image	smoothing and edge detection, Optimum linear fi	lter and order
statisti	c filter, Examples – Wiener a	and Median filters, Applications	
Books	:		_
3. 4.	Dr. Shaila D. Apate , "Adv 8126541245 S. K. Mitra, "Digital Sign Higher Education, 2006, 3rd Rabiner and Juang, "Funda 13-015157-2 .	l, 2007, 4th edition, ISBN: 10: 0131873741 vanced Digital Signal Processing," Wiley Publ., 2 al Processing : A Computer Based Approach", d edition, <i>ISBN</i> -10: 0070429537 mentals of Speech Recognition", Prentice Hall, 1 ed E. Woods, "Digital Image Processing and Anal BN: 81-7808-629-8	McGraw Hill 994, ISBN:0-
Refere	ences:		
1.	Chanda, Muzumdar, "Digit PHI, 2nd Ed., ISBN: 978-8	al Image Processing and Analysis," Estern Econ 1-203-4096-1	omy Edition,
2.		nal Processing", Oxford University Press, 20	15, ISBN-10:
3.		Digital Signal Processing," Thomson Brook	s/Cole 2004,
4.	Nelson Morgan and Ben (Gold, "Speech and Audio Signal Processing: P ic", 1999, John Wiley and Sons, ISBN: 03879515	-
5.	Raghuveer. M. Rao, AjitS. applications," Pearson Edu	Bopardikar, "Wavelet Transforms: Introduction to acation, Asia, 2000.Dale Grover and John R. and the Microcontroller", Prentice Hall, ISBN:0-1	to Theory and (Jack) Deller,

	Sa	avitribai Phule Pune Univ	ersity	
	Fourth Year	r of Computer Engineerin	g (2015 Course)	l -
		Elective III		
		410252(B): Compilers		
Teaching Scl TH: 03 Hou		Credit 03	In-Sem (Pa	ination Scheme: aper): 30 Marks per): 70 Marks
Prerequisite Operating Syst		ry of Computation(310241),		
Companion	Course: 410255-La	aboratory Practice IV		
Course Obje	ectives:			
• T	o introduce proces	ss of compilation		
• T	o introduce compl	ier writing tools		
• T	o address issues ir	n code generation and optimizati	ion	
Course Outc	comes:			
On completio	on of the course, st	udent will be able to-		
- T	anion and implant			
• D	lesign and implem	ent a lexical analyzer and a synt	ax analyzer	
		ent a lexical analyzer and a synt te translations to generate i	-	for the given
• S		te translations to generate i	-	for the given
• S	pecify appropriat	te translations to generate i	intermediate code	for the given
 S p C 	pecify appropriat rogramming langu compare and contra	te translations to generate i lage construct	intermediate code	for the given
 S p C 	pecify appropriat rogramming langu compare and contra	te translations to generate i lage construct ast different storage managemer	intermediate code	for the given
 S p C 	pecify appropriat rogramming langu compare and contra	te translations to generate i age construct ast different storage managemen code optimization	intermediate code	for the given
 S p C Ic Unit I	pecify appropriat rogramming langu compare and contra dentify sources for	te translations to generate i hage construct ast different storage managemen code optimization Course Contents	intermediate code nt schemes	08 Hours
S P C C C I C I Introduction	pecify appropriat rogramming langu compare and contra dentify sources for to compilers De	te translations to generate i hage construct ast different storage managemen code optimization Course Contents Notion and Concepts	intermediate code nt schemes ymbol table Prelim	08 Hours inaries Memory
S S P C C I Introduction management,	pecify appropriat rogramming langu compare and contra dentify sources for to compilers De Operating syste	te translations to generate i hage construct ast different storage managemen code optimization Course Contents Notion and Concepts esign issues, passes, phases, sy	intermediate code nt schemes ymbol table Prelim exical Analysis T	08 Hours inaries Memory okens, Regular
 S p C Ic Unit I Introduction management, Expressions, 	pecify appropriat rogramming langu compare and contra dentify sources for to compilers De Operating syste Process of Lexic	te translations to generate i hage construct ast different storage managemen code optimization Course Contents Notion and Concepts esign issues, passes, phases, sy em support for compiler, L	intermediate code nt schemes ymbol table Prelim exical Analysis T	08 Hours inaries Memory okens, Regular
 S p C Ic Unit I Introduction management, Expressions, 	pecify appropriat rogramming langu compare and contra dentify sources for to compilers De Operating syste Process of Lexic	te translations to generate i age construct ast different storage managemen code optimization Course Contents Notion and Concepts esign issues, passes, phases, sy em support for compiler, L cal analysis, Block Schematic,	intermediate code nt schemes ymbol table Prelim exical Analysis T	08 Hours inaries Memory okens, Regular
 S p C Ic Unit I Introduction management, Expressions, 	pecify appropriat rogramming langu compare and contra dentify sources for to compilers De Operating syste Process of Lexic	te translations to generate i age construct ast different storage managemen code optimization Course Contents Notion and Concepts esign issues, passes, phases, sy em support for compiler, L cal analysis, Block Schematic,	intermediate code nt schemes ymbol table Prelim exical Analysis T	08 Hours inaries Memory okens, Regular
S S p C C T Introduction management, Expressions, analyzer usin Unit II	pecify appropriat rogramming langu compare and contra dentify sources for to compilers De Operating syste Process of Lexic g LEX, LEX featu	te translations to generate i age construct ast different storage managemen code optimization Course Contents Notion and Concepts esign issues, passes, phases, sy em support for compiler, L cal analysis, Block Schematic, res and specification.	intermediate code at schemes ymbol table Prelim exical Analysis T Automatic constru	08 Hours inaries Memory okens, Regular action of lexical 08 Hours
 S p C Id Unit I Introduction management, Expressions, analyzer usin Unit II Syntax Analy	pecify appropriat rogramming langu compare and contra dentify sources for to compilers De Operating syste Process of Lexic g LEX, LEX featu	te translations to generate i hage construct ast different storage managemen code optimization Course Contents Notion and Concepts esign issues, passes, phases, sy em support for compiler, L cal analysis, Block Schematic, res and specification. Parsing	Intermediate code Int schemes Automatic construe OP, Predictive parse	08 Hours inaries Memory 'okens, Regular iction of lexical 08 Hours er, SLR, LR(1),
 S p C Id Unit I Introduction management, Expressions, analyzer using Unit II Syntax Analy LALR parser	pecify appropriat rogramming langu compare and contra dentify sources for to compilers De Operating syste Process of Lexic g LEX, LEX featu ysis CFG, top-dow s, using ambiguou	te translations to generate i hage construct ast different storage managemen code optimization Course Contents Notion and Concepts esign issues, passes, phases, sy em support for compiler, L cal analysis, Block Schematic, res and specification. Parsing wn and bottom-up parsers, RE	Intermediate code Int schemes Automatic construe OP, Predictive parse recovery, automatic	08 Hours inaries Memory 'okens, Regular iction of lexical 08 Hours er, SLR, LR(1), c construction of
 S p C Id Unit I Introduction management, Expressions, analyzer using Unit II Syntax Analy LALR parser	pecify appropriat rogramming langu compare and contra dentify sources for to compilers De Operating syste Process of Lexic g LEX, LEX featu ysis CFG, top-dow s, using ambiguou YACC, Introduct	te translations to generate i age construct ast different storage managemen code optimization Course Contents Notion and Concepts esign issues, passes, phases, sy em support for compiler, L cal analysis, Block Schematic, res and specification. Parsing wn and bottom-up parsers, RE s grammar, Error detection and	Intermediate code Int schemes Automatic construe OP, Predictive parse recovery, automatic	08 Hours inaries Memory 'okens, Regular iction of lexical 08 Hours er, SLR, LR(1), c construction of

•

Faculty of Engineering Savitribai Phule Pune University **Unit III Syntax Translation Schemes 08 Hours** Syntax Directed Translation - Attribute grammar, S and L attributed grammar, bottom up and top down evaluations of S and L attributed grammar, Syntax directed translation scheme, Intermediate code - need, types: Syntax Trees, DAG, Three-Address codes: Quadruples, Triples and Indirect Triples, Intermediate code generation of declaration statement and assignment statement. **Run-time Storage Management 08 Hours Unit IV** Storage Management - Static, Stack and Heap, Activation Record, static and control links, parameter passing, return value, passing array and variable number of arguments, Static and Dynamic scope, Dangling Pointers, translation of control structures - if, if-else statement, Switchcase, while, do -while statements, for, nested blocks, display mechanism, array assignment, pointers, function call and return. Translation of OO constructs: Class, members and Methods. Unit V **Code Generation 08 Hours** Code Generation - Issues in code generation, basic blocks, flow graphs, DAG representation of basic blocks, Target machine description, peephole optimization, Register allocation and Assignment, Simple code generator, Code generation from labeled tree, Concept of code generator. **Unit VI Code Optimization 08 Hours** Need for Optimization, local, global and loop optimization, Optimizing transformations, compile time evaluation, common sub-expression elimination, variable propagation, code movement, strength reduction, dead code elimination, DAG based local optimization, Introduction to global data flow analysis, Data flow equations and iterative data flow analysis. **Books:** Text: 1. V Aho, R Sethi, J D Ullman, "Compilers: Principles, Techniques, and Tools". Pearson Edition, ISBN 81-7758-590-8 2. Dick Grune, Bal, Jacobs, Langendoen, "Modern Compiler Design", Wiley, ISBN 81-265-0418-8 **References:** 1. Anthony J. Dos Reis, "Compiler Construction Using Java", JavaCC and Yacc Wiley, ISBN 978-0-470-94959-7 2. K Muneeswaran, "Compiler Design", Oxford University press, ISBN 0-19-806664-3 3. J R Levin, T Mason, D Brown, "Lex and Yacc", O'Reilly, 2000 ISBN 81-7366-061-X

Sa	vitribai Phule Pune Unive	ersity	_
	of Computer Engineering Elective III		
410252(C): Er	nbedded and Real Time O	perating System	
Teaching Scheme: TH: 03 Hours/WeekCredit 03Examination Scheme: In-Sem (Paper): 30 Marks 			
Prerequisite Courses: 310251-5	Systems Programming and Operation		,
Companion Course: 410255-La	boratory Practice IV		
Course Objectives:			
	mbedded system and its constitu	ients	
• To learn the selection pro	ocess of processor and memory f	or the embedded syste	ems
• To learn communication	buses and protocols used in the	embedded and real-tir	ne systems
• To understand real-time of	operating system (RTOS) and the	e types of RTOS	
• To learn various approact	hes to real-time scheduling		
• To learn software develop	pment process and tools for RTC	OS applications	
Course Outcomes:			
On completion of the course, stu			
e .	mbedded and real-time systems		
-	ous protocols used for embedded	and real-time system	IS
• Classify and exemplify se	6 6		
	nent process to a given RTOS ap	plication	
• Design a given RTOS ba	11		
	Course Contents		
Unit I	Embedded Systems		08 Hours
Introduction to Embedded syste	-		•
hardware Unit s and devices in	•	-	
timers, reset circuits, watchdog-			
LCD, LED, Keypad, pulse diale	r, modem, transceivers, embedd	led software, softwar	e are tools for

Unit II	Embedded System On Chip (SOC)	08 Hours
Embedded S	OC, ASIC, IP core, ASIP, ASSP, examples of embedded system	ns. Advanced
	processors for embedded systems- ARM, SHARC, DSP, Superscalar Ur	
organization,	Memory organization, Performance metrics for a processor, memory	ory map and
addresses, Pro	ocessor selection and memory selection for real-time applications.	
Networked e	mbedded systems- I2C, CAN, USB, Fire wire. Internet enabled system	ms- TCP, IP,
UDP. Wireles	ss and mobile system Protocols- IrDA, Bluetooth, 802.11, ZigBee.	
Unit III	I/O Communication	08 Hours
Devices and	communication buses: Types of I/O communication, types of serial co	mmunication,
Serial protoco	ols, Devices and buses- RS-232C, RS-485, HDLC, SPI, SCI, SI, SDIO.	Parallel ports
and interfacir	g. Parallel device protocols: ISA, PCI, PCI/X, ARM bus, Wireless device	es.

designing an embedded system.

Real Time Operating System

Savitribai Phule Pune University

08 Hours

Home

Introduction to real-time operating systems. Hard versus soft real-time systems and their timing constraints. Temporal parameters of real-time process: Fixed, Jittered and sporadic release times, execution time. Types of real-time tasks, Precedence constraints and data dependency among real-time tasks, other types of dependencies for real-time tasks. Functional parameters and Resource parameters of real-time process, Real-time applications: Guidance and control, Signal processing, Multimedia, real-time databases.

Real-time task and task states, task and data. Approaches to real-time scheduling: clock driver, weighted round-robin, priority-driven- Fixed priority and dynamic priority algorithms –Rate Monotonic (RM), Earliest-Deadline-First (EDF), Latest-Release-Time (LRT), Least-Slack-Time-First (LST). Static and Dynamic systems, on-line and off-line scheduling, Scheduling a-periodic and sporadic real-time tasks.

Unit V	Inter-process communication	08 Hours
Resources an	d resource access control-Assumption on resources and their usage, Enfo	orcing mutual
exclusion and	l critical sections, resource conflicts and blocking, Effects of resource c	ontention and
resource acce	ss control - priority inversion, priority inheritance.	

Inter-process communication-semaphores, message queues, mailboxes and pipes. Other RTOS services-Timer function, events, Interrupts - enabling and disabling interrupts, saving and restoring context, interrupt latency, shared data problem while handling interrupts. Interrupt routines in an RTOS environment.

Unit VI

Multiprocessor Scheduling

08Hours

Multiprocessor Scheduling, resource access control and synchronization in Real-time Operating system. Real-time communication: Model, priority-based service disciplines for switched networks, weighted round-robin service disciplines, Medium access-control protocols for broadcast networks, internet and resource reservation protocols, real-time protocols. Software development process for embedded system: Requirements engineering, Architecture and design of an embedded system, Implementation aspects in an embedded system, estimation modeling in embedded software. Validation and debugging of embedded systems. Embedded software development tools. Debugging techniques. Real-time operating systems: Capabilities of commercial real-time operating systems, QNX/Neutrino, Microc/OS-II, VxWorks, Windows CE and RTLinux.

Books:

Text:

- 1. Raj Kamal, "Embedded Systems: Architecture, programming and Design", 2nd Edition, McGraw-Hill, ISBN: 13: 9780070151253
- 2. Jane W. S. Liu, "Real-Time Systems", Pearson Education, ISBN: 10: 0130996513
- 1. David E. Simon, "An Embedded Software Primer", Pearson Education, ISBN: :8177581546

References:

- 1. Sriram V. Iyer, Pankaj Gupta, "Embedded Real-time Systems Programming", Tata McGraw-Hill, ISBN: 13: 9780070482845
- **2.** Dr. K. V. K. K. Prasad, "Embedded Real-Time Systems: Concepts: Design and Programming", Black Book, Dreamtech Press, ISBN: 10: 8177224611,13: 9788177224610

Faculty of Englicering		Savitribar i nuic	Tune Oniversity
	vitribai Phule Pune Unive of Computer Engineering Elective III	•/	-
410252(D): Sof	t Computing and Optimiz	ation Algorithms	
Teaching Scheme: TH: 03 Hours/Week	Credit 03		ntion Scheme: er): 30 Marks r): 70 Marks
Prerequisite Courses: 310250-I	Design and Analysis of Algorith		
Companion Course: 410255-La	boratory Practice IV		
 framework of soft comput To acquire knowledge of computing and swarm int To explore the application To understand the need of Course Outcomes: On completion of the course, stud Apply soft computing me logic, fuzzy inference sys Design and developmed 	Artificial Neural Networks Fuzz celligence ns of soft computing f optimization dent will be able to– ethodologies, including artificial tems and genetic algorithms ent of certain scientific and	zy sets, Fuzzy Logic, T neural networks, fuzz d commercial appli	Evolutionary zy sets, fuzzy ication using
computational neural ne genetic algorithms in spec	twork models, fuzzy models, cified applications.	fuzzy clustering app	olications and
Unit I	Introduction		08 Hours
Introduction, soft computing vs.	hard computing, various types	of soft computing te	chniques, and
applications of soft computing.	Basic tools of soft computin	g – Fuzzy logic, ne	ural network,
evolutionary computing. Introduc	ction: Neural networks, applicat	ion scope of neural ne	etworks, fuzzy
logic, genetic algorithm, and hyb	rid systems.		
Unit II	Fuzzy Sets and Logic		08 Hours
Basic concepts of fuzzy logic, Fu	zzy sets and Crisp sets, Fuzzy s	et theory and operation	ons, Properties
of fuzzy sets, Fuzzy and Cris	p relations, Fuzzy to Crisp c	onversion. Membersł	nip functions,
interference in fuzzy logic, fu	uzzy if-then rules, Fuzzy im	plications and Fuzz	y algorithms,
Fuzzyfications and Defuzzification	ons.		
Unit III	Fuzzy Systems		08 Hours
Fuzzy Controller, Fuzzy rule bas	e and approximate reasoning: tr	uth values and tables	in fuzzy logic,
fuzzy propositions formation of	f rules, decomposition of com	pound rules, aggrega	tion of fuzzy
rules, fuzzy reasoning, fuzzy infe	erence system, fuzzy expert syste	ems.	
Unit IV	Evolutionary Computing		08 Hours

•

Basic Evolutionary Processes, EV : A Simple Evolutionary System, Evolutionary Systems as Problem Solvers, A Historical Perspective, Canonical Evolutionary Algorithms - Evolutionary Programming, Evolution Strategies, A Unified View of Simple EAs- A Common Framework, Population Size.

Unit V

Genetic Algorithm

08 Hours

Basic concepts, working principle, procedures of GA, flow chart of GA, Genetic representations, (encoding) Initialization and selection, Genetic operators, Mutation, Generational Cycle, Traditional algorithm vs genetic algorithm, simple GA, general genetic algorithm, schema theorem, Classification of genetic algorithm, Holland classifier systems, genetic programming, applications of genetic algorithm, Convergence of GA. Applications and advances in GA, Differences and similarities between GA and other traditional method, applications.

Unit VI

Swarm Intelligence

08 Hours

Swarm intelligence, Particle Swarm Optimization (PSO) Algorithm- Formulations, Pseudo-code, parameters, premature convergence, topology, biases, Real valued and binary PSO, Ant colony optimization (ACO)- Formulations, Pseudo-code. Applications of PSO and ACO.

Books:

Text:

- 1. S.N. Sivanandam- "Principles of Soft Computing", Wiley India- ISBN- 9788126527410
- **2.** S. Rajsekaran and G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications", Prentice Hall of India, ISBN: 0451211243
- **3.** J S R Jang, CT Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI PVT LTD, ISBN 0-13-261066-3.
- **4.** De Jong , "Evolutionary Computation: A Unified Approach", Cambridge (Massachusetts): MIT Press. ISBN: 0-262-04194-4. 2006
- 5. Maurice Clerc, "Particle Swarm Optimization", ISTE, Print ISBN:9781905209040 |Online ISBN:9780470612163 |DOI:10.1002/9780470612163

References:

- 1. Andries P. Engelbrecht, "Computational Intelligence: An Introduction", 2nd Edition-Wiley India- ISBN: 978-0-470-51250-0
- 2. N.P.Padhy, "Artificial Intelligence and Intelligent Systems" Oxford University Press, ISBN 10: 0195671546
- 3. Siman Haykin, "Neural Networks", Prentice Hall of India, ISBN: 0-7923-9475-5
- **4.** Timothy J. Ross, "Fuzzy Logic with Engineering Applications", Wiley India, ISBN: 978-0-470-74376-8
- **5.** Eiben and Smith, "Introduction to Evolutionary Computation", Springer, ISBN-10: 3642072852

			j
	avitribai Phule Pune Univ r of Computer Engineerii	•	
Tourin rea	Elective IV		
4102	253(A): Software Defined	Networks	
Teaching Scheme: TH: 03 Hours/Week	Credit 03	In-Sem (Pa	nation Scheme: per): 30 Marks
Prerequisite Courses: 310245	-Computer Networks	End-Sem (Paj	per): 70 Marks
Companion Course: 410255-I			
Course Objectives:			
, and the second s	lenges of the traditional netwo	rks and evolution of	next generation
networks.	-		-
• To gain conceptual und	erstanding of Software Defined	Networking (SDN) a	nd its role in
Data Center.		,	
• To understand role of O	pen Flow protocol and SDN Co	ontrollers.	
• To study industrial depl	oyment use-cases of SDN		
• To Understand the Netv	vork Functions Virtualization ar	nd SDN.	
Course Outcomes:			
On completion of the course, st	udent will be able to-		
• Interpret the need of So	ftware Defined Networking solu	itions.	
• Analyze different metho	odologies for sustainable Softwa	re Defined Networki	ng solutions.
• Select best practices for	design, deploy and troubleshoo	t of next generation n	etworks.
• Develop programmabili	ty of network elements.		
• Demonstrate virtualizat	ion and SDN Controllers using	OpenFlow protocol	
	Course Contents		
Unit I Introduction	on to Software Defined Netwo	rking (SDN)	08 Hours
Challenges of traditional ne	etworks, Traditional Switch	Architecture - Con	trol, Data and
management Planes, Introduc	ction to SDN, Need of SD	N, History of SDN	I, Fundamental
characteristics of SDN (Plane	Separation, Simplified Devic	e and Centralized co	ontrol, Network
Automation and Virtualization	on, and Openness), SDN C	peration/Architecture	e, SDN API's
	und API's, East/West API's), ONF, SDN Dev	ices and SDN
Applications.			
Unit II	Open Flow		08 Hours

Unit II

Open Flow

08 Hours

Facu	savit ball	i nuic i une Oniversity
OpenFlov	w Overview, The OpenFlow Switch, The OpenFlow Controller, ,OpenFlo	w Ports, Message
Types, P	ipeline Processing, Flow Tables, Matching, Instructions, Action Set and	d List, OpenFlow
Protocol,	Proactive and Reactive Flow, Timers, OpenFlow Limitations, OpenFlow	w Advantages and
Disadvan	tages, Open v Switch Features	
Unit III	SDN Controllers	08 Hours
SDN Ope	enFlow Controllers: Open Source Controllers - NOX, POX, Beacon, Ma	aestro, Floodlight,
Ryu and	Open Daylight, Applicability of OpenFlow protocol in SDN Control	lers, Mininet, and
implemen	ting software-defined network (SDN) based firewall.	
Unit IV	SDN in Data Centre	08 Hours
Data Cei	nter Definition, Data Center Demands (Adding, Moving, Deleting R	lesources, Failure
Recovery	v, Multitenancy, Traffic Engineering and Path Efficiency), Tunneling Tea	chnologies for the
Data Cen	tter, SDN Use Cases in the Data Center, Comparison of Open SDN, Ov	verlays, and APIs,
Real-Wo	rld Data Center Implementations.	
Unit V	Network Functions Virtualization (NFV)	08 Hours
Definition	n of NFV, SDN Vs NFV, In-line network functions, Benefits of N	etwork Functions
Virtualiza	ation, Challenges for Network Functions Virtualization, Leading	NFV Vendors,
Comparis	son of NFV and NV.	
Unit VI	SDN Use Cases	08 Hours
Wide Ar	ea Networks, Service Provider and Carrier Networks, Campus Networks	vorks, Hospitality
Networks	s, Mobile Networks, Optical Networks, SDN vs P2P/Overlay Networks.	
Books:		
A 2. Si 2(3. T R	aul Goransson and Chuck Black, "Software Defined Networks: A pproach", Morgan Kaufmann, 2014, ISBN: 9780124166752, 978012416 iamak Azodolmolky, "Software Defined Networking with Open Flow, 013, ISBN: 9781849698726 homas D. Nadeau, Ken Gray, "SDN: Software Defined Networks, eview of Network Programmability Technologies", 2013, ISBN : 10:1-4 -4493-4230-2	56844. Packt Publishing, An Authoritative
Reference 1. V	es: ivek Tiwari, "SDN and OpenFlow for Beginners", Digital Services, 20)13. ISBN: 10: 1-
	40686-00-8, 13: 978-1-940686-00-4	
	ei Hu, "Network Innovation through OpenFlow and SDN: Principles a ress, 2014, ISBN: 10: 1466572094	nd Design", CRC
3. O	pen Networking Foundation (ONF) Documents, https://www.opennetwo	orking.org, 2015

•

	avitribai Phule Pune Univ r of Computer Engineerin Elective IV	•	
410253(B): Human Computer Interface			
Teaching Scheme: TH: 03 Hours/Week	Credit 03	Examir In-Sem (Pa	nation Scheme: per): 30 Marks per): 70 Marks
Prerequisite Courses: 210251-	Computer Graphics		
Companion Course: 410255-La	aboratory Practice IV		
Course Objectives:			
• To design, implement an	d evaluate effective and usable	Human Computer Inte	rfaces.
• To describe and apply co	re theories, models and method	ologies from the field	of HCI.
• Learn a variety of method	ds for evaluating the quality of a	user interface	
• To implement simple gra	phical user interfaces based on	principles of HCI.	
Course Outcomes:			
On completion of the course, stu	dent will be able to-		
• Evaluate the basics of hu	man and computational abilities	and limitations.	
• Inculcate basic theory, to	ols and techniques in HCI.		
• Apply the fundamental as	spects of designing and evaluati	ng interfaces.	
• Apply appropriate HCI to	echniques to design systems that	t are usable by people	
	Course Contents		
	tions of Human–Computer In		08 Hours
What is HCI – design, models, e	-	beople, computers and	methods. Basic
human abilities - vision, hearing	•		
Computers – speed, interfaces,	-		nory, Attention
Span, Visual Perception, psycho		-	
Methods for evaluation of i	_		
introspection, extracting the	•	-	-
interviews and questionnaires, co	ontinuous evaluation via user fe	edback and field stud	ies, choosing an
evaluation method.			0.0 11
Unit II Internation Decise Region Intern	The Design Process		08 Hours
Interaction Design Basics, Intera	-	_	
rules: design principles, principle			-
design rules, HCI design standar	us. Direct Mainpulation - Overv	new, scope, Applicati	Uns. Universal

Design, User-centered design, task analysis/GOMS, Graphic Design

Faculty	of Engineering Savitribai Phule	Pune University
Unit III	Implementation	08 Hours
Implementa	ation Tools, Technology and change designing for the Web, designing for p	oortable
devices. Ha	ndling errors and Designing Help. Prototyping and UI Software.	L
Unit IV	Evaluation and User Support	08 Hours
Evaluation	of User Interfaces. Web Browsers - Fonts, Color Palette, Color Depth, Res	olution,
Layout, Siz	e, Orientation. Mobile devices issues – design, limitations, what next. User	Support.
Unit V	Users Models	08 Hours
Predictive	Models, Cognitive Models. Interaction with Natural Languages, N	ext Generation
Interface.	Socio-organizational Issues and Stakeholder Requirements. Heurist	tic Evaluation,
Evaluation	with Cognitive Models, Evaluation with Users.	
Unit VI	Task Models and Dialogs	08 Hours
Task Analy	vsis, DOET (Design of Everyday Things). Design Dialogs Notations, Warr	nings, and Error
messages. I	Model-based Evaluation. User Testing, Usability Testing, User Acceptance	Testing.
Books:		
3rd 2. Jen	an J, Dix. Janet Finlay, Rusell Beale, "Human Computer Interaction", Pea Edition, 2004, ISBN 81-297-0409-9 any Preece, Rogers, Sharp, "Interaction Design-beyond human-comput LEY-INDIA, ISBN 81-265-0393-9	
 Jor Inte 4. Ma De 	hathan Lazar, Jinjuan Feng, Harry Hochheiser, "Research Methods in Hu eraction", Third Edition, Morgan Kaufmann, 2017, ISBN: 9780128053904 ary Beth Rosson and John M. Carroll, "Usability Engineering: velopment of Human-Computer Interaction", Morgan Kaufmann, 2001, 58607125	Scenario-Based

•

	avitribai Phule Pune Univ r of Computer Engineerin Elective IV		2
	410253(C): Cloud Compu	ting	
Teaching Scheme:CreditExamination Scheme			
TH: 03 Hours/Week	03		per): 30 Marks per): 70 Marks
Prerequisite Courses:			
Companion Course: 410255-L	aboratory Practice IV		
Course Objectives:			
	l computing concepts;		
	tforms for cloud computing		
	cations based on cloud computin	ng	
Course Outcomes: On completion of the course, stu	ident will be able to		
1			
To install cloud computing environments.To develop any one type of cloud			
 To explore future trends 			
	Course Contents		
Unit I	Basics of Cloud Computing		08 Hours
Overview, Applications, Intranets and the Cloud. Your Organization and Cloud Computing- Benefits, Limitations, Security Concerns. Software as a Service (SaaS)- Understanding the Multitenant Nature of SaaS Solutions, Understanding SOA. Platform as a Service (PaaS)-IT Evolution Leading to the Cloud, Benefits of Paas Solutions, Disadvantages of PaaS Solutions. Infrastructure as a Service (IaaS)-Understanding IaaS, Improving Performance through Load Balancing, System and Storage Redundancy, Utilizing Cloud-Based NAS Devices, Advantages, Server Types. Identity as a Service (IDaaS).			
Unit II Da	ata Storage and Security in Clo	oud	08 Hours
Cloud file systems: GFS and HI Simple DB Gautam Shrauf, Clo Securing the Cloud- General S Continuity and Disaster Recover	ud Storage-Overview, Cloud Sto ecurity Advantages of Cloud-B	orage Providers. [Anth ased Solutions, Introd	ony T. Velte]3
Unit III	Virtualization		08 Hours
Implementation Levels of Virtu Hypervisors, Virtualization of Management, Virtualization fo Consortium, Open Virtualization Data (XML, JSON), Solution Protocol, and RSS), Standards for	CPU, Memory, and I/O Dev r Data-Center Automation. Co on Format, Standards for Appli Stacks (LAMP and LAPP),S	ces, Virtual Clusters mmon Standards: Th cation Developers: B	and Resource ne Open Cloud rowsers (Ajax),
Unit IV	Amazon Web Services		08 Hours

Faculty of Engineering

Services offered by Amazon Hands-on Amazon, EC2 - Configuring a server, Virtual Amazon, Cloud, AWS Storage and Content Delivery Identify key AWS storage options Describe Amazon EBS Creating an Elastic Block Store Volume Adding an EBS Volume to an Instance Snap shotting an EBS Volume and Increasing Performance Create an Amazon S3 bucket and manage associated objects. AWS Load Balancing Service Introduction Elastic Load Balancer Creating and Verifying Elastic Load Balancer.

Unit VUbiquitous Clouds and the Internet of Things08 HoursCloud Trends in Supporting Ubiquitous Computing, Performance of Distributed Systems and the
Cloud, Enabling Technologies for the Internet of Things (RFID, Sensor Networks and ZigBee
Technology, GPS), Innovative Applications of the Internet of Things (Smart Buildings and Smart
Power Grid, Retailing and Supply-Chain Management, Cyber-Physical System), Online Social and
Professional Networking.

Unit VI

Future of Cloud Computing

08 Hours

How the Cloud Will Change Operating Systems, Location-Aware Applications, Intelligent Fabrics, Paints, and More, The Future of Cloud TV, Future of Cloud-Based Smart Devices, Faster Time to Market for Software Applications, Home-Based Cloud Computing, Mobile Cloud, Autonomic Cloud Engine, Multimedia Cloud, Energy Aware Cloud Computing, Jungle Computing. Docker at a Glance: Process Simplification, Broad Support and Adoption, Architecture, Getting the Most from Docker, The Docker Workflow.

Books:

Text:

- **1.** Anthony T. Velte Toby J. Velte, Robert Elsenpeter, "Cloud Computing: A Practical Approach", 2010, The McGraw-Hill.
- 2. Dr. Kris Jamsa, "Cloud Computing: SaaS, PaaS, IaaS, Virtualization and more", Wiley Publications, ISBN: 978-0-470-97389-9
- **3.** Gautam Shrof, "ENTERPRISE CLOUD COMPUTING Technology Architecture, Applications, Cambridge University Press, *ISBN*: 9780511778476

References:

- 1. Dr. Kumar Saurabh, "Cloud Computing", Wiley Publication, ISBN10: 8126536039
- 2. Buyya, "Mastering Cloud Computing", Tata McGraw Hill, ISBN-13: 978-1-25-902995-0,
- 3. Barrie Sosinsky, "Cloud Computing", Wiley India, ISBN: 978-0-470-90356-8
- 4. Kailash Jayaswal, "Cloud computing", Black Book, Dreamtech Press
- **5.** Thomas Erl, Zaigham Mahmood and Ricardo Puttini, "Cloud Computing: Concepts, Technology and Architecture", Pearson, 1st Edition, ISBN :978 9332535923, 9332535922
- Tim Mather, Subra K, Shahid L., Cloud Security and Privacy, Oreilly, ISBN-13 978-81-8404-815-5

	vitribai Phule Pune Un of Computer Enginee Elective IV 410253(D): Open Ele	ring (2015 Course)
Teaching Scheme:	Credit	Examination Scheme:
TH: 03 Hours/Week	03	In-Sem (Paper): 30 Marks End-Sem (Paper): 70 Marks
Companion Course: 410255-La	boratory Practice IV	

The open elective included, so as to give the student a wide choice of subjects from other Engineering Programs. To inculcate the out of box thinking and to feed the inquisitive minds of the learners the idea of open elective is need of the time.

Flexibility is extended with the choice of open elective allows the learner to choose interdisciplinary/exotic/future technology related courses to expand the knowledge horizons.

With this idea learner opts for the course without any boundaries to choose the approved by academic council and Board of Studies.

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) 410254:Laboratory Practice III

Teaching Scheme:	Credit	Examination Scheme:
Practical : 04 Hours/Week	02	Term Work: 50 Marks
		Practical: 50 Marks

Companion Courses: 410250 and 410251

Course Objectives and Outcomes: Practical hands on is the absolute necessity as far as employability of the learner is concerned. The presented course is solely intended to enhance the competency by undertaking the laboratory assignments of the core courses.

About

Laboratory Practice III is for practical hands on for core courses Machine Learning and Information & Cyber Security.

Guidelines for Laboratory Conduction

- List of recommended programming assignments and sample mini-projects is provided for reference.
- Referring these, Course Teacher or Lab Instructor may frame the assignments/mini-project by understanding the prerequisites, technological aspects, utility and recent trends related to the respective courses.
- Preferably there should be multiple sets of assignments/mini-project and distribute among batches of students.
- Real world problems/application based assignments/mini-projects create interest among learners serving as foundation for future research or startup of business projects.
- Mini-project can be completed in group of 2 to 3 students.
- Software Engineering approach with proper documentation is to be strictly followed.
- Use of open source software is to be encouraged.
- Instructor may also set one assignment or mini-project that is suitable to respective course beyond the scope of syllabus.

Operating System recommended :- 64-bit Open source Linux or its derivative

Programming Languages: C++/JAVA/PYTHON/R

Programming tools recommended: Front End: Java/Perl/PHP/Python/Ruby/.net, Backend : MongoDB/MYSQL/Oracle, Database Connectivity : ODBC/JDBC, Additional Tools: Octave, Matlab, WEKA.

Guidelines for Student Journal

The laboratory assignments are to be submitted by student in the form of journal. Journal may consists of prologue, Certificate, table of contents, and <u>handwritten write-up</u> of each assignment (Title, Objectives, Problem Statement, Outcomes, software and Hardware requirements, Date of Completion, Assessment grade/marks and assessor's sign, <u>Theory- Concept in brief</u>, <u>Algorithm/Database design</u>, test cases, conclusion/analysis). <u>Program codes with sample output of all performed assignments are to be submitted as softcopy.</u>

As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part of write-ups and program listing to journal may be avoided. Use of digital storage media/DVD containing students programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints at Laboratory.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments performance of student. Each lab assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness reserving weightage for successful mini-project completion and related documentation.

Guidelines for Practical Examination

- Both internal and external examiners should jointly frame suitable problem statements for practical examination based on the term work completed.
- During practical assessment, the expert evaluator should give the maximum weightage to the satisfactory implementation of the problem statement.
- The supplementary and relevant questions may be asked at the time of evaluation to test the student's for advanced learning, understanding of the fundamentals, effective and efficient implementation.
- Encouraging efforts, transparent evaluation and fair approach of the evaluator will not create any uncertainty or doubt in the minds of the students. So adhering to these principles will consummate our team efforts to the promising boost to the student's academics.

Guidelines for Instructor's Manual

The instructor's manual is to be developed as a hands-on resource and as ready reference. The instructor's manual need to include prologue (about University/program/ institute/ department/foreword/ preface etc), University syllabus, conduction and Assessment guidelines, topics under consideration-concept, objectives, outcomes, set of typical applications/assignments/ guidelines, references among others.

Suggested List of Laboratory Assignments

(any 04 assignments Machine Learning and Information & Cyber Security AND Mini-project per course)

410250: Machine Learning

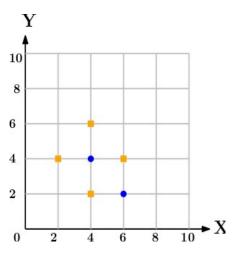
1. Assignment on Linear Regression:

The following table shows the results of a recently conducted study on the correlation of the number of hours spent driving with the risk of developing acute backache. Find the equation of the best fit line for this data.

Number of hours spent driving (x)	Risk score on a scale of 0-100 (y)
10	95
9	80
2	10
15	50
10	45
16	98
11	38
16	93

2. Assignment on Decision Tree Classifier:

Faculty of Engineering


Savitribai Phule Pune University

A dataset collected in a cosmetics shop showing details of customers and whether or not they responded to a special offer to buy a new lip-stick is shown in table below. Use this dataset to build a decision tree, with Buys as the target variable, to help in buying lip-sticks in the future. Find the root node of decision tree. According to the decision tree you have made from previous training data set, what is the decision for the test data: [Age < 21, Income = Low, Gender = Female, Marital Status = Married]?

ID	Age	Income	Gender	Marital Status	Buys
1	< 21	High	Male	Single	No
2	< 21	High	Male	Married	No
3	21-35	High	Male	Single	Yes
4	>35	Medium	Male	Single	Yes
5	>35	Low	Female	Single	Yes
6	>35	Low	Female	Married	No
7	21-35	Low	Female	Married	Yes
8	< 21	Medium	Male	Single	No
9	<21	Low	Female	Married	Yes
10	> 35	Medium	Female	Single	Yes
11	< 21	Medium	Female	Married	Yes
12	21-35	Medium	Male	Married	Yes
13	21-35	High	Female	Single	Yes
14	> 35	Medium	Male	Married	No

3. Assignment on k-NN Classification:

In the following diagram let blue circles indicate positive examples and orange squares indicate negative examples. We want to use k-NN algorithm for classifying the points. If k=3, find the class of the point (6,6). Extend the same example for Distance-Weighted k-NN and Locally weighted Averaging

4. Assignment on K-Means Clustering:

We have given a collection of 8 points. P1=[0.1,0.6] P2=[0.15,0.71] P3=[0.08,0.9] P4=[0.16, 0.85] P5=[0.2,0.3] P6=[0.25,0.5] P7=[0.24,0.1] P8=[0.3,0.2]. Perform the k-mean clustering with initial centroids as m1=P1 =Cluster#1=C1 and m2=P8=cluster#2=C2. Answer the following

- 1] Which cluster does P6 belongs to?
- 2] What is the population of cluster around m2?
- 3] What is updated value of m1 and m2?

5.	Mini-Project 1 on Genetic Algorithm:			
	Apply the Genetic Algorithm for optimization on a dataset obtained from UCI ML repository.			
	For Example: IRIS Dataset or Travelling Salesman Problem or KDD Dataset			
6.	Mini-Project 2 on SVM:			
	Apply the Support vector machine for classification on a dataset obtained from UCI ML			
	repository.			
	For Example: Fruits Classification or Soil Classification or Leaf Disease Classification			
7.	Mini-Project 3 on PCA:			
	Apply the Principal Component Analysis for feature reduction on any Company Stock Market			
	Dataset			
410251::: Information and Cyber Security				
1.	Implementation of S-DES			
2.	Implementation of S-AES			
3.	Implementation of Diffie-Hellman key exchange			
4.	Implementation of RSA.			
5.	Implementation of ECC algorithm.			
6.	Mini Project 1: SQL Injection attacks and Cross -Site Scripting attacks are the two most			
	common attacks on web application. Develop a new policy based Proxy Agent, which classifies			
	the request as a scripted request or query based request, and then, detects the respective type of			
	attack, if any in the request. It should detect both SQL injection attack as well as the Cross-Site			
	Scripting attacks.			
-				
7.	Mini Project 2: This task is to demonstrate insecure and secured website. Develop a web site			
	and demonstrate how the contents of the site can be changed by the attackers if it is http based			
	and not secured. You can also add payment gateway and demonstrate how money transactions			
	can be hacked by the hackers. Then support your website having https with SSL and			
	demonstrate how secured website is.			

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) 410255:Laboratory Practice IV

Teaching Scheme:	Credit	Examination Scheme:
Practical : 04 Hours/Week	02	Term Work: 50 Marks Presentation: 50 Marks
Companion Courses: 410252 and 41	0253	

Companion Courses: 410252 and 410253

Course Objectives and Outcomes: Practical hands on is the absolute necessity as far as employability of the learner is concerned. The presented course is solely intended to enhance the competency by undertaking the laboratory assignments of the elective courses. Enough choice is provided to the learner to choose an elective of one's interest.

Laboratory Practice II is companion lab for elective course III and elective course IV.

Guidelines for Laboratory Conduction

- List of recommended programming assignments and sample mini-projects is provided for reference.
- Referring these, Course Teacher or Lab Instructor may frame the assignments/mini-project by understanding the prerequisites, technological aspects, utility and recent trends related to the respective courses.
- Preferably there should be multiple sets of assignments/mini-project and distribute among batches of students.
- Real world problems/application based assignments/mini-projects create interest among learners serving as foundation for future research or startup of business projects.
- Mini-project can be completed in group of 2 to 3 students.
- Software Engineering approach with proper documentation is to be strictly followed.
- Use of open source software is to be encouraged.
- Instructor may also set one assignment or mini-project that is suitable to respective course beyond the scope of syllabus.

Operating System recommended :- 64-bit Open source Linux or its derivative

Programming Languages: C++/JAVA/PYTHON/R

Programming tools recommended: Front End: Java/Perl/PHP/Python/Ruby/.net, Backend : MongoDB/MYSQL/Oracle, Database Connectivity : ODBC/JDBC, Additional Tools: Octave, Matlab, WEKA.

Guidelines for Student Journal

The laboratory assignments are to be submitted by student in the form of journal. Journal may consists of prologue, Certificate, table of contents, and <u>handwritten write-up</u> of each assignment (Title, Objectives, Problem Statement, Outcomes, software and Hardware requirements, Date of Completion, Assessment grade/marks and assessor's sign, <u>Theory- Concept in brief</u>, <u>Algorithm/Database design</u>, test cases, conclusion/analysis). <u>Program codes with sample output</u> of all performed assignments are to be submitted as softcopy.

As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part of write-ups and program listing to journal may be avoided. Use of digital storage media/DVD containing students programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints at Laboratory.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab Syllabus for Fourth Year of Computer Engineering #73/87 assignments performance of student. Each lab assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness reserving weightage for successful mini-project completion and related documentation.

Guidelines for Practical Examination

- <u>It is recommended to conduct examination based on Mini-Project demonstration and</u> <u>related skill learned.</u> Team of 2 to 3 students may work on mini-project. During the assessment, the expert evaluator should give the maximum weightage to the satisfactory implementation and software engineering approach followed.
- The supplementary and relevant questions may be asked at the time of evaluation to test the student's for advanced learning, understanding, effective and efficient implementation and demonstration skills.
- Encouraging efforts, transparent evaluation and fair approach of the evaluator will not create any uncertainty or doubt in the minds of the students. So adhering to these principles will consummate our team efforts to the promising start of the student's academics.

Guidelines for Instructor's Manual

The instructor's manual is to be developed as a hands-on resource and as ready reference. The instructor's manual need to include prologue (about University/program/ institute/ department/foreword/ preface etc), University syllabus, conduction and Assessment guidelines, topics under consideration-concept, objectives, outcomes, set of typical applications/assignments/ guidelines, references among others.

Suggested List of Laboratory Assignments

<u>Recommended / Sample set of assignments and mini projects for reference for all four courses</u> offered for Elective I and for all four courses offered for Elective II. Respective Student have to complete laboratory work for elective I and II that he/she has opted.

410252: Elective III

410252 (A) Advanced Digital Signal Processing

Use -

A] MATLAB or other equivalent software working with speech and image signals/files and for analysis purpose.

B] C++ or JAVA for working with sampled data (n – point data samples of DT/Digital signal)

C] JAVA or other for image processing assignments

- 1. Apply 1-D DFT to observe spectral leakage and frequency analysis of different window sequences, plot the frequency spectrums.
- **2.** Adaptive FIR and IIR filter design:
 - A] Steepest descent and Newton method, LMS method,
 - B] Adaptive IIR Filter design: Pade Approximation, Least square design
- **3.** Power spectrum estimation and analysis:

Take a speech signal and perform

A] Non parametric method: DFT and window sequences

- B] Parametric methods: AR model parameters
- 4. Multi-rate DSP and applications Decimation, Interpolation, sampling rate conversion
 A] Take a speech signal with specified sampling frequency. Decimate by factor D(e.g. factor 2)

	\sim		
	Hom	Γ	
	D	•	

г	active of Engineering Savitribal Flute Fune University
	B] Take a speech signal with specified sampling frequency. Interpolate by factor I(e.g. factor)
_	C] Sampling rate conversion by factor of I/D
5.	Write a program to calculate LPC coefficients, reflection coefficients using Levinson Durbin algorithm
6.	Feature Extraction of speech signal
	A] Using LPC and other methods
	B] Apply different coding methods: harmonic coding, vector quantization
7.	Mini-Project 1: Discrete Cosine Transform (DCT)
	A] To find DCT of NxN image block
	B] To plot spectrum of the speech signal using DCT and find the correlation of DCT
	transformed signal
	C] Image filtering using DCT : LPF, edge detection
	D] Image compression using DCT, Image resizing
0	
8.	Mini-Project 2: Wavelet Transform (WT)
	A] To get compression using wavelet decomposition of a signal
	B] Denoising using wavelet decomposition
	C] To get compression using wavelet decomposition of a signal (Harr Wavelet)
	D] To get low-pass filtered and high pass filtered speech signal using Haar wavelet
	E] Image filtering using WT
9.	Mini-Project 3: Image Processing
	A] Histogram and Equalization
	B] Image Enhancement Techniques
	C] Image Filtering: LPF, HPF, Sobel/Prewitt Masks
	D] Image Smoothing with special filters: Median, Weiner, Homomorphic filters
	Course: 410252 (B) Compiler Construction
1.	Implement a Lexical Analyzer using LEX for a subset of C. Cross check your output with Stanford LEX.
า	
2.	Implement a parser for an expression grammar using YACC and LEX for the subset of C. Cross check your output with Stanford LEX and YACC.
`	y 1
3.	Generate and populate appropriate Symbol Table.
4.	Implementation of Semantic Analysis Operations (like type checking, verification of
	function parameters, variable declarations and coercions) possibly using an Attributed
	Translation Grammar.
5.	Implement the front end of a compiler that generates the three address code for a simple
	language.
6.	A Register Allocation algorithm that translates the given code into one with a fixed number
	of registers.
7.	Implementation of Instruction Scheduling Algorithm.
8.	Implement Local and Global Code Optimizations such as Common Sub-expression
0.	Elimination, Copy Propagation, Dead-Code Elimination, Loop and Basic-Block
	Optimizations. (Optional)
9.	Mini-Project 1: Implement POS tagging for simple sentences written Hindi or any Indian
9.	
	Language Course: 410252 (C) Embedded and Real Time Operating System
1	
1.	Simulation/ Design, planning and modeling of a Real-Time / Embedded System for- (any one)
	• Alarm system for elderly people (Fall detection, Heart attack)
	Medication machine for patients in ICU
	 Smart traffic control
G W	Smart traffic control

•

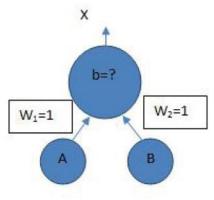
- Autonomous car
 - Smart home (sound system, temperature, light)
 - Control of an autonomous quadrocopter (e.g. for surveillance tasks)
 - Control of a rail station
 - Video conference system

Washing machine

Course: 410252 (D) Soft Computing and Optimization Algorithms

- 1. Implement Union, Intersection, Complement and Difference operations on fuzzy sets. Also create fuzzy relation by Cartesian product of any two fuzzy sets and perform max-min composition on any two fuzzy relations.
- 2. Implement genetic algorithm for benchmark function (eg. Square, Rosenbrock function etc) Initialize the population from the Standard Normal Distribution. Evaluate the fitness of all its individuals. Then you will do multiple generation of a genetic algorithm. A generation consists of applying selection, crossover, mutation, and replacement.

Use:


- Tournament selection without replacement with tournament size s
- One point crossover with probability Pc
- bit-flip mutation with probability Pm
- use full replacement strategy
- **3.** Implement Particle swarm optimization for benchmark function (eg. Square, Rosenbrock function). Initialize the population from the Standard Normal Distribution. Evaluate fitness of all particles.

Use :

- c1=c2=2
- Inertia weight is linearly varied between 0.9 to 0.4.
- Global best variation

4. Implement basic logic gates using Mc-Culoch-Pitts or Hebbnet neural networks

5. Write a program to find the Boolean function to implement following single layer perceptron. Assume all activation functions to be the threshold function which is 1 for all input values greater than zero and 0, otherwise.

- 6. Implement Union, Intersection, Complement and Difference operations on fuzzy sets. Also create fuzzy relation by Cartesian product of any two fuzzy sets and perform max-min composition on any two fuzzy relations.
- 7. The figure shows a single hidden layer neural network. The weights are initialized to 1's as shown in the diagram and all biases are initialized to 0's. Assume all the neurons have linear activation functions. The neural network is to be trained with stochastic (online) gradient descent. The first training example is [x1=1, x2=0] and the desired output is 1. Design the back-propagation algorithm to find the updated value for W11 after backpropagation.

 Choose the value that is the closest to the options given below: [learning rate =0.1] X₁ W₁₁=1 W₁₂=1 W₁₂=1 W₂₁=1 V₂₂=1 8. Mini-Project 1 on Genetic Algorithm: Apply the Genetic Algorithm for optimization on a dataset obtained from UCI ML repository. For Example: IRIS Dataset or Travelling Salesman Problem or KDD Dataset 9. Apply the Particle swarm optimization for Travelling Salesman Problem 10. Mini-Project 2 on Fuzzy Logic: 	
 8. Mini-Project 1 on Genetic Algorithm: Apply the Genetic Algorithm for optimization on a dataset obtained from UCI ML repository. For Example: IRIS Dataset or Travelling Salesman Problem or KDD Dataset 9. Apply the Particle swarm optimization for Travelling Salesman Problem 	
 8. Mini-Project 1 on Genetic Algorithm: Apply the Genetic Algorithm for optimization on a dataset obtained from UCI ML repository. For Example: IRIS Dataset or Travelling Salesman Problem or KDD Dataset 9. Apply the Particle swarm optimization for Travelling Salesman Problem 	
 Apply the Genetic Algorithm for optimization on a dataset obtained from UCI ML repository. For Example: IRIS Dataset or Travelling Salesman Problem or KDD Dataset Apply the Particle swarm optimization for Travelling Salesman Problem 	
9. Apply the Particle swarm optimization for Travelling Salesman Problem	
Solve Greg Viot's fuzzy cruise controller using MATLAB Fuzzy logic toolbox or Oct Python.	ave or
11. Mini-Project 3 on Fuzzy Logic:	
Solve Air Conditioner Controller using MATLAB Fuzzy logic toolbox or Octave or P	ython.
410253: Elective III	
Course: 410253 (A) Software Defined Networks	
1. Phase I:Set up Mininet network emulation environment using Virtual Box and M Demonstrate the basic commands in Mininet and emulate different custom network to	
(Simple, Linear, and Tree). View flow tables.	1 05
2. Phase II:Study open source POX and Floodlight controller. Install controller and run	custom
topology using remote controller like POX and floodlight controller. Identify inserte by the controllers.	
 Phase III:Create a SDN environment on Mininet and configure a switch to provide a functionality using POX controller. Ref:https://github.com/mininet/openflow-tutorial/wiki/Create- Firewall 	firewall
4. Phase IV:Build your own Internet Router using Mininet as an Emulator and POX con Write a simple router with a static routing table. The router will receive raw Ethernet It will process the packets just like a real router, and then forward them to the outgoing interface. Make sure you receive the Ethernet frame and create the forwardir so packets go to the correct interface. Ref: <u>https://github.com/mininet/mininet/wiki/s Router</u>	frames. correct ng logic
5. Phase V: Emulate a Data Center and manage it via a Cloud Network Controller: of multi-rooted tree-like (Clos) topology in Mininet to emulate a data center. Your second is to implement specific SDN applications on top of the network controller in conchestrate multiple network tenants within a data center environment, in the conduct network virtualization and management. https://opencourses.uoc.gr/courses/pluginfile.php/13576/mod_resource/content/2/exerted floated float	ond task order to ntext of Ref:
Course:410253 (B) Human Computer Interface	

Faculty of Engineering

1.	Identify specialized users and related facilities for a selected product / system and make necessary suggestions for its improved accessibility design.
2.	Design user persona for the users of selected product / system.
3.	Conduct a contextual inquiry for selected product / system.
4.	Design an interface prototype for selected product / system.
5.	Evaluate an interface using usability evaluation technique.
5.	Course: 410253 (C) Cloud Computing
List of	Mini-projects: Students have to carry out following two mini-projects in a group of 2-3 students.
1.	1. Installation and configuration of own Cloud
	2. Implementation of Virtualization in Cloud Computing to Learn Virtualization Basics,
	Benefits of Virtualization in Cloud using Open Source Operating System.
	3. Study and implementation of infrastructure as Service using Open Stack.
	4. Write a program for Web feed using PHP and HTML.
	5. Write a Program to Create, Manage and groups User accounts in own Cloud by Installing Administrative Features.
	6. Case study on Amazon EC2 to learn about Amazon EC2, Amazon Elastic Compute
	Cloud is a central part of Amazon.com's cloud computing platform, Amazon Web
	Services. How EC2 allows users torrent virtual computers on which to run their own
	computer applications.
	7. Case study on Microsoft azure to learn about Microsoft Azure is a cloud computing
	platform and infrastructure, created by Microsoft, forbuilding, deploying and
	managing applications and services through a global network of Microsoft-managed
	datacenters. How it work, different services provided by it.
	8. Design and develop custom Application (Mini Project) using Salesforce Cloud.
	9. Assignment to install and configure Google App Engine.
	10. Design an Assignment to retrieve, verify, and store user credentials using Firebase
	Authentication, the Google App Engine standard environment, and Google Cloud
	Data store.
	11. Creating an Application in SalesForce.com using Apex programming Language.
	12. Design an Assignment based on Working with Mangrasoft Aneka Software.
2.	Mini-Project 1: Setup your own cloud for Software as a Service (SaaS) over the existing
	LAN in your laboratory. In this assignment you have to write your own code for cloud
	controller using open source technologies without HDFS. Implement the basic operations
	may be like to upload and download file on/from cloud in encrypted form.
3.	Mini-Project 2: Setup your own cloud for Software as a Service (SaaS) over the existing
	LAN in your laboratory. In this assignment you have to write your own code for cloud
	controller using open source technologies to implement with HDFS. Implement the basic
	operations may be like to divide the file in segments/blocks and upload/ download file
	on/from cloud in encrypted form.
	Course: 410253 (D) Open Elective
Suital	ole set of programming assignments/Mini-projects for open elective Opted.
Sarra	se se se programming assignments, mini projects for open elective opted.

Faculty of Engineering	Savitribai Phule Pune University
Savitribai Phule Pune Unive Fourth Year of Computer Engineering	
410256:Project Work Stag	
Teaching Scheme: Credit	Examination Scheme:
Practical : 06 Hours/Week	Term Work: 100 Marks Presentation: 50 Marks
Companion Course:	
Course Objectives:	
• To follow SDLC meticulously and meet the objectives of	f proposed work
• To test rigorously before deployment of system	
• To validate the work undertaken	
• To consolidate the work as furnished report.	
Course Outcomes:	
On completion of the course, student will be able to-	
• Show evidence of independent investigation	
• Critically analyze the results and their interpretation.	
• Report and present the original results in an orderly wa	y and placing the open questions in
the right perspective.	
• Link techniques and results from literature as well as actu	ual research and future research lines
with the research.	
• Appreciate practical implications and constraints of the s	pecialist subject
Guidelines	
In Project Work Stage-II, the student shall complete the remain	ning project work which consists of
Selection of Technology and Tools, Installations, UML performance discussions using data tables per parameter con	-

ŀ B existing/known algorithms/systems and comparative analysis and validation of results and conclusions. The student shall prepare and submit the report of Project work in standard format for satisfactory completion of the work that is the duly certified by the concerned guide and head of the Department/Institute.

Follow guidelines and formats as mentioned in Project Workbook recommended by Board of Studies.

Savitribai Phule Pune University Fourth Year of Computer Engineering (2015 Course) 410257: Audit Course 6

In addition to credits, it is recommended that there should be audit course in preferably in each semester from second year to supplement their knowledge and skills. Student will be awarded the bachelor's degree if he/she earns 190 credits and clears all the audit courses specified in the syllabus. The student will be awarded grade as AP on successful completion of audit course. The student may opt for one of the audit courses per semester, starting in second year first semester. Though not mandatory, such a selection of the audit courses helps the learner to explore the subject of interest in greater detail resulting in achieving the very objective of audit course's inclusion. List of options offered is provided. Each student has to choose one audit course from the list per semester. Evaluation of audit courses are suggested.

Criteria:

The student registered for audit course shall be awarded the grade AP (Audit Course Pass) and shall be included such AP grade in the Semester grade report for that course, provided student has the minimum attendance as prescribed by the Savitribai Phule Pune University and satisfactory insemester performance and secured a passing grade in that audit course. No grade points are associated with this 'AP' grade and performance in these courses is not accounted in the calculation of the performance indices SGPA and CGPA. Evaluation of audit course will be done at institute level itself. (Ref- http://www.unipune.ac.in/Syllabi_PDF/revised-2015/engineering/UG_RULE_REGULATIONS_FOR_CREDIT_SYSTEM-2015_18June.pdf) Guidelines for Conduction and Assessment(Any one or more of following but not limited to)

VisitsDemo	res/ Guest Lectures (Social/Field) and reports onstrations	 Surveys Mini Project Hands on experience on specific focused topic 					
Guidelines fo	or Assessment (Any one or more of	following but not limited to)					
Writte	en Test	IPR/Publication					
Demonstrations/ Practical Test Report							
Preser	ntations						
Audit Course	e 3 Options						
AC6- I	Business Intelligence	Business Intelligence					
AC6-II	Gamification	Gamification					
AC6-III	Quantum Computing	Quantum Computing					
AC6-IV	Usability Engineering	Usability Engineering					
AC6-V	Conversational Interfaces	Conversational Interfaces					
AC6-VI	MOOC- Learn New Skills (Refer Page 48)						
-	-	s listed at SPPU website too, if not opted earlier nts/Syllabus%202017/Forms/AllItems.aspx					

Savitribai Phule Pune University, Pune Fourth Year of Computer Engineering (2015 Course) 410257: Audit Course 6 AC6 – I: Business Intelligence

Course Objectives:

- To understand the concept of Business Intelligence
- To know the details of Decision Support System
- To inculcate the concepts of Data Warehousing
- To understand the basics of design and management of BI systems

Course Outcome:

On completion of the course, learner will be able to-

- Apply the concepts of Business Intelligence in real world applications
- Explore and use the data warehousing wherever necessary
- Design and manage practical BI systems

Course Contents:

- **1.Concepts with Mathematical treatment :** Introduction to data, Information and knowledge, Decision Support System, Theory of Operational data and informational data, Introduction to Business Intelligence, Determining BI Cycle, BI Environment and Architecture, Identify BI opportunities, Benefits of BI. Role of Mathematical model in BI, Factors Responsible for successful BI Project, Obstacle to Business Intelligence in an Organization
- 2. Decision Making Concepts : Concepts of Decision Making, Techniques of Decision Support System (DSS), Development of Decision Support System (DSS), Applications of DSS, Role of Business Intelligence in DSS.
- **3. Data-Warehouse :** Introduction: Data warehouse Modeling, data warehouse design, data-warehouse technology, Distributed data warehouse, and materialized view
- **4.Data Pre-processing and outliers:** Data Analytics life cycle, Discovery, Data preparation, Preprocessing requirements, data cleaning, data integration, data reduction, data transformation, Data discretization, and concept hierarchy generation, Model Planning, Model building, Communicating Results and Findings, Operationalizing, Introduction to OLAP. Real-world Applications, types of outliers, outlier challenges, Outlier detection Methods, Proximity-Based Outlier analysis, Clustering Based Outlier analysis.
- **5.Designing and managing BI systems :** Determining infrastructure requirements, planning for scalability and availability, managing and maintenance of BI systems, managing BI operations or business continuity

- 1. R. Sharda, D. Delen, and E. Turban, Business Intelligence and Analytics. Systems for Decision Support,10th Edition. Pearson/Prentice Hall, 2015. ISBN-13: 978-0-13-305090-5, ISBN-10: 0-13-305090-4;
- 2. Business Process Automation, Sanjay Mohapatra, PHI.
- 3. Introduction to business Intelligence and data warehousing, IBM, PHI, ISBN: 9788120339279

Savitribai Phule Pune University, Pune Fourth Year of Computer Engineering (2015 Course) 410257: Audit Course 6 AC6 – II: Gamification

Gamification is the application of game-design elements and game principles in non-game contexts. Gamification commonly employs game design elements to improve user engagement, organizational productivity, flow, crowd sourcing, employee recruitment and evaluation, ease of use, usefulness of systems, exercise, traffic violations, voter apathy, and more.

Course Objectives:

- To develop problem solving abilities using gamification
- To apply gamifications for Web Applications
- To apply gamifications for Mobile Applications

Course Outcome:

On completion of the course, learner will be able to-

- To write survey on the gamification paradigms.
- To write programs to solve problems using gamification and open source tools.
- To solve problems for multi-core or distributed, concurrent/Parallel environments

Course Contents:

- **1. Gaming Foundations:** Introduction, Resetting Behavior, Replaying History, Gaming foundations: Fun Quotient, Evolution by loyalty, status at the wheel, the House always wins.
- **2. Developing Thinking:** Re-framing Context, Player Motivation, Case studies for Thinking: Tower of Hanoi.
- **3. Opponent Moves in Gamification:** Reclaiming Opposition, Gamed Agencies, Remodeling design, Game Mechanics, Case study of Maze Problem.
- **4. Game Design:** Game Mechanics and Dynamics: Feedback and Re-enforcement, Game Mechanics in depth, putting it together, Case study of 8 queens problem.
- **5.** Advanced tools, techniques and applications: Gamification case Studies, Coding basic game Mechanics, Instant Gamification Platforms, Mambo.io(Ref:http://mambi.io), Installation and use of BigDoor (Open Source http://bigdoor.com),ngageoint/gamification-server (ref: <u>https://github.com/ngageoint/gamification-server</u>

- Mathias Fuchs, Sonia Fizek, Paolo Ruffino, Niklas Schrape, Rethinking Gamification, Meson Press, ISBN (Print): 978-3-95796-000-9, http://projects.digital-cultures.net/mesonpress/files/2014/06/9783957960016-rethinking-gamification.pdf, ISBN (PDF): 978-3-95796-001-6,
- Gabe Zechermann, Christopher Cunningham, Gamification Design, Oreilly, ISBN: 978-1-449-39767-8, ftp://ftp.ivacuum.ru/i/WooLF/%
 - B2011%5D%20Gamification%20by%20Design.pdf
- 3. http://press.etc.cmu.edu/files/MobileMediaLearning-DikkersMartinCoulter-web.pdf

Savitribai Phule Pune University, Pune Fourth Year of Computer Engineering (2015 Course) 410257: Audit Course 6 AC6 – III: Ouantum Computing

Quantum computation and quantum information is the study of the information processing tasks that can be accomplished using quantum mechanical systems. Sounds pretty simple and obvious, doesn't it? Like many simple but profound ideas it was a long time before anybody thought of doing information processing using quantum mechanical sys- tems. To see why this is the case, we must go back in time and look in turn at each of the fields which have contributed fundamental ideas to quantum computation and quantum information -quantum mechanics, computer science, information theory, and cryptography.

Course Objectives:

- To understand basic concepts of quantum computing
- To learn quantum search algorithms
- To apply quantum information for solving real world problem

Course Outcome:

On completion of the course, learner will be able to-

- design efficient quantum algorithms
- apply quantum algorithms for several basic promise problems
- learn the hidden subgroup problems and their role in quantum computing

Course Contents:

- **1. Fundamental concepts:** Introduction and overview, Quantum computation, quantum algorithm, Introduction to quantum mechanics, The postulates of quantum mechanics
- **2. Quantum computation:** Quantum circuits, The quantum Fourier transform and its applications, Quantum search algorithms, Quantum computers: physical realization
- **3. Quantum information:** Quantum noise and quantum operations, Distance measures for quantum information, Quantum error-correction, mEntropy and information, Quantum information theory

- 1. Michael A. Nielsen and Isaac L. Chuang, "Quantum Computation and Quantum Information", ISBN: 9780521635035.
- 2. Mikio Nakahara and Tetsuo Ohmi, "Quantum Computing", CRC Press 2008.
- 3. N. David Mermin, "Quantum Computer Science", Cambridge 2007

Savitribai Phule Pune University, Pune Fourth Year of Computer Engineering (2015 Course) 410257: Audit Course 6 AC6 – IV: Usability Engineering

In this course you will have a hands-on experience with usability evaluation and user-centered design. This course will not help to learn how to implement user interfaces, but rather how to design based on the needs of users, which you will determine, and learn how toevaluate your designs rigorously. This help in knowing more about the usability; human computer interaction, the

psychological aspects of computing, evaluation.

Course Objectives:

- To understand the human centered design process and usability engineering process and their roles in system design and development.
- To know usability design guidelines, their foundations, assumptions, advantages, and weaknesses
- Understand the user interface based on analysis of human needs and prepare a prototype system

Course Outcome:

On completion of the course, learner will be able to-

- Describe the human centered design process and usability engineering process and their roles in system design and development.
- Discuss usability design guidelines, their foundations, assumptions, advantages, and weaknesses.
- Design a user interface based on analysis of human needs and prepare a prototype system.
- Assess user interfaces using different usability engineering techniques.
- Present the design decisions

Course Contents:

1. What Is Usability?: Usability and Other Considerations, Definition of Usability, Example: Measuring the Usability of Icons, Usability Trade-Offs, Categories of Users and Individual User Differences

- **2.** Usability in Software Development : The Emergence of Usability, Human Computer Interaction, Usability Engineering
- 3. The usability Engineering Lifecycle: Requirement Analysis, Design, Testing, Development
- 4. Usability Assessment Methods beyond Testing
- **5.** International User Interfaces

- **1.** Mary Beth Rosson, John Millar Carroll, "Usability Engineering: Scenario- based Development of Human- Computer Interaction"
- 2. Jakob Nielsen, "Usability Engineering"
- 1. Deborah J. Mayhew, "The usability engineering lifecycle"

Savitribai Phule Pune University, Pune Fourth Year of Computer Engineering (2015 Course) 410257: Audit Course 6 AC6 – V: Conversational Interfaces

Effective information security at the enterprise level requires participation, planning, and practice. It is an ongoing effort that requires management and staff to work together from the same script. Fortunately, the information security community has developed a variety of resources, methods, and best practices to help modern enterprises address the challenge. Unfortunately, employing these tools demands a high degree of commitment, understanding, and skill attributes that must be sustained through constant awareness and training.

Course Objectives:

- To understand the basics of conversation
- To know the interactive environments for conversational skills
- To acquaint with the speech to text and text to speech techniques

Course Outcome:

On completion of the course, learner will be able to-

- Develop an effective interface for conversation
- Explore advanced concepts in user interface

Course Contents:

- **1. Introduction to Conversational Interface:** Preliminaries, Developing a speech based Conversational Interface, Conversational Interface and devices.
- **2.** A technology of Conversation: Introduction, Conversation as Action, The structure of Conversation, The language of Conversation.

3. Developing a Speech-Based Conversational Interface: Implementing Text to Speech: Text Analysis, Wave Synthesis, Implementing Speech Recognition: Language Model, Acoustic Model, Decoding. Speech Synthesis Markup Language.

4. Advanced voice user interface design

- 1. Cathy Pearl, "Designing Voice User Interfaces: Principles of Conversational Experiences"
- 2. Michael McTear, ZoraidaCallejas, David Griol, "The Conversational Interface: Talking to Smart Devices"
- 3. Martin Mitrevski, "Developing Conversational Interfaces for iOS: Add Responsive Voice Control"
- 4. SriniJanarthanam, "Hands-On Chatbots and Conversational UI Development: Build chatbots"

		Sa	witribai Phu	le Pune	University		
	Ba		of Computer	Engine	ering (2015)
F	irst Year	Sec		190 Cre	e <mark>dit)</mark> ird Year		Forth Year
Credit =50		Second Year Credit =50			$\frac{1101}{\text{edit} = 46}$		Credit =44
				nester I			
Course Code	Course	Course Code	Course	Course Code	Course	Course Code	Course
107001	Engineering Mathematics I	210241	Discrete Mathematics	310241	Theory of Computation	410241	High Performance Computing
107002 / 107009	Engineering Physics / Engineering Chemistry	210242	Digital Electronics and Logic Design	310242	Database Management Systems (DBMS)	410242	Artificial Intelligence and Robotics
102006	Engineering Graphics I	210243	Data Structures and Algorithms	310243	Software Engineering & Project Management	410243	Data Analytics
103004 / 104012	Basic Electrical Engineering /Basic Electronics Engineering	210244	Computer Organization and Architecture	310244	Information Systems & Engineering Economics	410244	 Elective I Digital Signal Processing Software Architecture and Design Pervasive and Ubiquitous Computing Data Mining and Warehousing
101005	Basic Civil and Environmental Engineering	210245	Object Oriented Programming	310245	Computer Networks (CN)	410245	 Elective II Distributed Systems Software Testing and Quality Assurance Operations Research Mobile Communication
110003	Fundamentals of Programming Languages I	210246	Digital Electronics Lab	310246	Skills Development Lab	410246	Laboratory Practice I
111007	Workshop Practice	210247	Data Structures Lab	310247	DBMS Lab	410247	Laboratory Practice II
		210248	Object Oriented Programming Lab	310248	CN Lab	410248	Project Work Stage I
		210249	Soft Skills	310249	Audit Course 3	410249	Audit Course 3
		210250	Audit Course 1				

Semester II 🗠							
Course Code	Course	Course Code	Course	Course Code	Course	Course Code	Course
107008	Engineering Mathematics II	207003	Engineering Mathematics III	310250	Design & Analysis of Algorithms	410250	Machine Learning
107009 / 107002	Engineering Chemistry / Engineering Physics	210251	Computer Graphics	310251	Systems Programming & Operating System (SP & OS)	410251	Information and Cyber Security
102013	Basic Mechanical Engineering	210252	Advanced Data Structures	310252	Embedded Systems & Internet of Things (ES & IoT)	410252	Elective III Advanced Digital Signal Processing Compilers Embedded and Real Time Operating System Soft Computing and Optimization Algorithms
101011	Engineering Mechanics	210253	Microprocesso r	310253	Software Modeling and Design	410253	Elective IV Software Defined Networks Human Computer Interface Cloud Computing Open Elective
04012 / 103004.	Basic Electronics Engineering / Basic Electrical Engineering	210254	Principles of Programming Languages	310254	Web Technology	410254	Laboratory Practice III
110010	Fundamentals of Programming Languages II	210255	Computer Graphics Lab	310255	Seminar & Technical Communicati on	410255	Laboratory Practice IV
102014	Engineering Graphics II	210256	Advanced Data Structures Lab	310256	Web Technology Lab	410256	Project Work Stage II
		210257	Microprocesso r Lab	310257	SP & OS Lab	410257	Audit Course 3
		210258	Audit Course 2	310258	ES & IoT Lab		

